Dysfunction of mitochondria, key players in various essential cell processes, has been repeatedly reported in schizophrenia (SZ). Recently, several studies have reported functional recovery and cellular viability following mitochondrial transplantation, mostly in ischemia experimental models. Here, we aimed to demonstrate beneficial effects of isolated active normal mitochondria (IAN-MIT) transfer in vitro and in vivo, using SZ-derived induced pluripotent stem cells (iPSCs) differentiating into glutamatergic neuron, as well as a rodent model of SZ.
View Article and Find Full Text PDFMethods Mol Biol
October 2015
Mitochondria, similar to living cells and organelles, have negative membrane potential and can therefore accumulate permeable lipophilic cations. Those cations which exhibit fluorescence activity after accumulation into energized systems are widely used to decipher changes in membrane potential by imaging techniques. Here we describe the use of the lipophilic cation 5,5',6,6'tetrachloro-1,1',3,3'-tetraethylbenzimidazol-carbocyanine iodide (JC-1), which alters reversibly its color from green (J-monomer, at its low concentration in the cytosol) to red (J-aggregates, at its high concentration in active mitochondria) with increasing mitochondrial membrane potential (Δψm).
View Article and Find Full Text PDFBackground: Whereas procoagulation abnormalities in acute stress are well established, little is known about the mechanism of hypercoagulation in chronic stress, such as post-traumatic stress disorder (PTSD). This is crucial, given the fact that chronic coagulation disturbances have been associated with increased morbidity and premature mortality due to thromboembolism and cardiovascular disorders, complications recently described in PTSD patients.
Objectives: To explore the mechanisms of hypercoagulation in chronic PTSD.