Publications by authors named "Odile Merdrignac-Conanec"

Nanostructured electrocatalysts for microbial fuel cell air-cathodes were obtained via use of conductive carbon blacks for the synthesis of high performing 3D conductive networks. We used two commercially available nanocarbons, Black Pearls 2000 and multiwalled carbon nanotubes, as conductive scaffolds for the synthesis of nanocomposite electrodes by combining: a hydrothermally carbonized resin, a sacrificial polymeric template, a nitrogenated organic precursor and iron centers. The resulting materials are micro-mesoporous, possess high specific surface area and display N-sites (N/C of 3-5 at%) and Fe-centers (Fe/C < 1.

View Article and Find Full Text PDF

Mo-based cluster compounds are promising candidates for thermoelectric applications at high temperatures due to their very low lattice thermal conductivity values. Here, we report on a detailed investigation of the crystal structure and transport properties measured in a wide range of temperatures (2-800 K) of polycrystalline AgRbMoSe. Single-crystal X-ray diffraction shows that this compound crystallizes in the hexagonal space group P6/m.

View Article and Find Full Text PDF

We report on the influence of oxygen impurities on the gas sensing properties of gallium nitride (GaN) chemiresistors. As shown by XRD, elemental analysis, and TEM characterization, surface oxidation of GaN-for example, upon contact to ambient air atmosphere-creates an oxidative amorphous layer which provides the sites for the sensing toward CO. Treating this powder under dry ammonia at 800 °C converts the oxide layer in nitride, and consequently the sensing performance toward CO is dramatically reduced for ammonia treated GaN gas sensors.

View Article and Find Full Text PDF

MCM-41 nanoporous silicas show a very high selectivity for monoalcohols over aprotic molecules during adsorption of a binary mixture in the gas phase. We present here an original use of gravimetric vapour sorption isotherms to characterize the role played by the alcohol hydrogen-bonding network in the adsorption process. Beyond simple selectivity, vapour sorption isotherms measured for various compositions help to completely unravel at the molecular level the step by step adsorption mechanism of the binary system in the nanoporous solid, from the first monolayers to the complete liquid condensation.

View Article and Find Full Text PDF

The efficient infrared-to-visible upconversion emission present in Er-doped lanthanum oxysulfide crystal powders is used as a fine thermal sensor to determine the influence of upconversion processes on the laser-induced thermal load produced by the pump laser and to assess the potentialities of this material in order to obtain anti-Stokes laser-induced cooling. The analysis of the upconversion emission and excitation spectra as well as the decay curves indicates that energy transfer upconversion is the main mechanism responsible for the green (⁴S) and red (⁴F) upconversion luminescence. The dependence on temperature of the intensity ratio of upconversion emission from thermally-coupled ²H and ⁴S levels of Er in the 240-300 K temperature range has been used to estimate a relative sensitivity of 1.

View Article and Find Full Text PDF

Lichens are symbiotic organisms known for producing unique secondary metabolites with attractive cosmetic and pharmacological properties. In this paper, we investigated three standard methods of preparation of Pseudevernia furfuracea (blender grinding, ball milling, pestle and mortar). The materials obtained were characterized by electronic microscopy, nitrogen adsorption and compared from the point of view of extraction.

View Article and Find Full Text PDF

In situ neutron diffraction measurements of the nanocrystalline deuterated oxyhydroxide TiO(OD)(2) compound were performed as a function of time and temperature under NH(3) gas flow in order to study the hydrogen-deuterium exchange mechanism. Data were collected on the instrument D20 at the ILL (France) and the analysis of the kinetics was directly based on the contrast variation of the incoherent neutron cross section of hydrogen and deuterium. The time evolution of the hydrogenated phase fraction was described using the well-known Kolmogorov-Johnson-Mehl-Avrami (KJMA) expression.

View Article and Find Full Text PDF

We have investigated the stimulated emission properties of Nd(3+) doped La(2)O(2)S powders at room temperature as a function of pumping energy density, excitation wavelength, and Nd(3+) ion concentration. The absolute stimulated emission energy has been measured. Expressions for the slope efficiencies and lasing thresholds as a function of rare earth concentration and pumping wavelengths, which qualitatively agree with experimental observations, are discussed.

View Article and Find Full Text PDF

In situ neutron diffraction measurements of nanocrystalline titanium oxynitrides were performed, as a function of temperature and time, to explore the nitrogen/oxygen substitution mechanism occurring during their synthesis by reaction of gaseous ammonia with nanocrystalline Ti(OH)(4). These neutron diffraction experiments are supported by chemical analysis and X-ray diffraction, allowing the description of the structural variations and ordering process between the Ti(O/N)(2) anatase and the Ti(O/N) rock-salt phases. Our results show that the formation of the Ti(O/N) rock-salt phase goes along with the creation of vacancies on the Ti sites and that the N/O substitution proceeds but without N/O ordering.

View Article and Find Full Text PDF