Mainstream virus detection relies on the specific amplification of nucleic acids via polymerase chain reaction, a process that is slow and requires extensive laboratory expertise and equipment. Other modalities, such as antigen-based tests, allow much faster virus detection but have reduced sensitivity. In this study, we report the development of a flow virometer for the specific and rapid detection of single nanoparticles based on confocal microscopy.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2022
Recent advances in the field of cell therapy have proposed new solutions for tissue repair and regeneration using various cell delivery approaches. Here we studied a novel topical delivery system of encapsulated cells in hybrid polyethylene glycol-fibrinogen (PEG-Fb) hydrogel microspheres to respiratory tract models. We investigated basic parameters of cell encapsulation, delivery and release in conditions of inflamed and damaged lungs of bacterial-infected mice.
View Article and Find Full Text PDFThe past decade has witnessed tremendous endeavors to deliver novel preclinical lung models for pulmonary research endpoints, including foremost with the advent of and . With growing interest in aerosol transmission and infection of respiratory viruses within a host, most notably the SARS-CoV-2 virus amidst the global COVID-19 pandemic, the importance of crosstalk between the different lung regions (i.e.
View Article and Find Full Text PDFLiver-resident macrophages Kupffer cells (KCs) and infiltrating Ly6C monocytes both contribute to liver tissue regeneration in various pathologies but also to disease progression upon disruption of orderly consecutive regeneration cascades. Little is known about molecular pathways that regulate their differentiation, maintenance, or inflammatory behavior during injury. Here, we show that copper metabolism MURR1 domain (COMMD)10-deficient KCs adopt liver-specific identity.
View Article and Find Full Text PDFIdentification of early processes leading to complex tissue pathologies, such as inflammatory bowel diseases, poses a major scientific and clinical challenge that is imperative for improved diagnosis and treatment. Most studies of inflammation onset focus on cellular processes and signaling molecules, while overlooking the environment in which they take place, the continuously remodeled extracellular matrix. In this study, we used colitis models for investigating extracellular-matrix dynamics during disease onset, while treating the matrix as a complete and defined entity.
View Article and Find Full Text PDFStaphylococcus aureus is a major cause of infectious disease. Liver Kupffer cells (KCs) are responsible for sequestering and destroying S. aureus through the phagolysosomal pathway.
View Article and Find Full Text PDFLy6C monocyte tissue infiltrates play important roles in mediating local inflammation, bacterial elimination and resolution during sepsis and inflammatory bowel disease (IBD). Yet, the immunoregulatory pathways dictating their activity remain poorly understood. COMMD family proteins are emerging as key regulators of signaling and protein trafficking events during inflammation, but the specific role of COMMD10 in governing Ly6C monocyte-driven inflammation is unknown.
View Article and Find Full Text PDFMonocyte-derived macrophages (MoMF) play a pivotal role in the resolution of acetaminophen-induced liver injury (AILI). Timely termination of neutrophil activity and their clearance are essential for liver regeneration following injury. Here, we show that infiltrating Ly6C monocytes, their macrophage descendants, and neutrophils spatially and temporally overlap in the centrilobular necrotic areas during the necroinflammatory and resolution phases of AILI.
View Article and Find Full Text PDFUnlabelled: Indoline carbamates, AN680 and AN917 decrease cytokines, TNF-α and IL-6 in peritoneal macrophages activated by lipopolysaccharide (LPS) and in mouse tissues after LPS injection. They prevent nuclear translocation of nuclear factor κB (NF-κB) and activator protein 1. Only AN917 inhibits cholinesterase (ChE) at relevant concentrations.
View Article and Find Full Text PDFThe microRNA miR-504 targets TP53 mRNA encoding the p53 tumor suppressor. miR-504 resides within the fibroblast growth factor 13 (FGF13) gene, which is overexpressed in various cancers. We report that the FGF13 locus, comprising FGF13 and miR-504, is transcriptionally repressed by p53, defining an additional negative feedback loop in the p53 network.
View Article and Find Full Text PDF