Publications by authors named "Odd-Arne Rognli"

The Entada landrace of enset ( (Welw.) Chessman) is probably the most unique indigenous crop in Ethiopia, being maintained and utilized by the Ari people in the South of Ethiopia. Here we describe genetic diversity, selection signatures and relationship of Entada with cultivated and wild enset using 117 Entada genotypes collected from three Entada growing regions in Ethiopia (Sidama, South and North Ari).

View Article and Find Full Text PDF

The sustainable production of perennial grasses in Northern Norway is at risk due to the ongoing climate change. The predicted increase in temperatures and variable weather patterns are further expected to create challenges for winter survival of timothy (Phleum pratense L.).

View Article and Find Full Text PDF

Conservative flowering behaviours, such as flowering during long days in summer or late flowering at a high leaf number, are often proposed to protect against variable winter and spring temperatures which lead to frost damage if premature flowering occurs. Yet, due the many factors in natural environments relative to the number of individuals compared, assessing which climate characteristics drive these flowering traits has been difficult. We applied a multidisciplinary approach to 10 winter-annual Arabidopsis thaliana populations from a wide climactic gradient in Norway.

View Article and Find Full Text PDF

Due to an increase in the consumption of food, feed, and fuel and to meet global food security needs for the rapidly growing human population, there is a necessity to obtain high-yielding crops that can adapt to future climate changes. Currently, the main feed source used for ruminant livestock production is forage grasses. In temperate climate zones, perennial grasses grown for feed are widely distributed and tend to suffer under unfavorable environmental conditions.

View Article and Find Full Text PDF

The majority of forage grass species are obligate outbreeders. Their breeding classically consists of an initial selection on spaced plants for highly heritable traits such as disease resistances and heading date, followed by familial selection on swards for forage yield and quality traits. The high level of diversity and heterozygosity, and associated decay of linkage disequilibrium (LD) over very short genomic distances, has hampered the implementation of genomic selection (GS) in these species.

View Article and Find Full Text PDF

Temperate species often require or flower most rapidly in the long daylengths, or photoperiods, experienced in summer or after prolonged periods of cold temperatures, referred to as vernalization. Yet, even within species, plants vary in the degree of responsiveness to these cues. In , () and () genes are key to photoperiod and vernalization perception and antagonistically regulate () to influence the flowering time of the plants.

View Article and Find Full Text PDF

Meadow fescue (Festuca pratensis Huds.) is one of the most important forage grasses in temperate regions. It is a diploid (2n = 14) outbreeding species that belongs to the genus Festuca.

View Article and Find Full Text PDF

Survivor populations of red clover ( L.) from plots in a field experiment in southern Norway were genetically characterized using genotyping by sequencing, and compared with the original population and each other. Genetic differentiation between populations was characterized on the basis of allele frequencies of single nucleotide polymorphisms (SNPs), using principal component analysis.

View Article and Find Full Text PDF

Red clover (Trifolium pratense L.) is one of the most important legume forage species in temperate livestock agriculture. Tetraploid red clover cultivars are generally producing less seed than diploid cultivars.

View Article and Find Full Text PDF

The effect of variable autumn temperatures in combination with decreasing irradiance and daylength on photosynthesis, growth cessation and freezing tolerance was investigated in northern- and southern-adapted populations of perennial ryegrass (Lolium perenne) and timothy (Phleum pratense) intended for use in regions at northern high latitudes. Plants were subjected to three different acclimation temperatures; 12, 6 and 9/3°C (day/night) for 4 weeks, followed by 1 week of cold acclimation at 2°C under natural light conditions. This experimental setup was repeated at three different periods during autumn with decreasing sums of irradiance and daylengths.

View Article and Find Full Text PDF
Article Synopsis
  • * The study examined Arabidopsis thaliana mutants to understand how different combinations of day and night temperatures (while keeping the average daily temperature constant) affect the timing of floral induction.
  • * Results showed that lower daytime temperatures led to faster flowering due to increased expression of key floral genes (FT and LFY), and indicated that the circadian clock protein LHY is important for this thermoperiodic response.
View Article and Find Full Text PDF

Climate change creates new patterns of seasonal climate variation with higher temperatures, longer growth seasons and more variable winter climates. This is challenging the winter survival of perennial herbaceous plants. In this review, we focus on the effects of variable temperatures during autumn/winter/spring, and its interactions with light, on the development and maintenance of freezing tolerance.

View Article and Find Full Text PDF

Lack of resistance to pink snow mould (Microdochium nivale) is a major constraint for adaptation of perennial ryegrass (Lolium perenne L.) to continental regions with long-lasting snow cover at higher latitudes. Almost all investigations of genetic variation in resistance have been performed using cold acclimated plants.

View Article and Find Full Text PDF

Important agronomical traits in perennial ryegrass (Lolium perenne) breeding programs such as winter survival and heading date, are quantitative traits that are generally controlled by multiple loci. Individually, these loci have relatively small effects. The aim of this study was to develop a candidate gene based Illumina GoldenGate 1,536-plex assay, containing single nucleotide polymorphism markers designed from transcripts involved in response to cold acclimation, vernalization, and induction of flowering.

View Article and Find Full Text PDF

Low temperature is one of the abiotic stresses seriously affecting the growth of perennial ryegrass (Lolium perenne L.), and freezing tolerance is a complex trait of major agronomical importance in northern and central Europe. Understanding the genetic control of freezing tolerance would aid in the development of cultivars of perennial ryegrass with improved adaptation to frost.

View Article and Find Full Text PDF

The increase in surface temperature of the Earth indicates a lower risk of exposure for temperate grassland and crop to extremely low temperatures. However, the risk of low winter survival rate, especially in higher latitudes may not be smaller, due to complex interactions among different environmental factors. For example, the frequency, degree and length of extreme winter warming events, leading to snowmelt during winter increased, affecting the risks of anoxia, ice encasement and freezing of plants not covered with snow.

View Article and Find Full Text PDF

Adaptation to temperate environments is common in the grass subfamily Pooideae, suggesting an ancestral origin of cold climate adaptation. Here, we investigated substitution rates of genes involved in low-temperature-induced (LTI) stress responses to test the hypothesis that adaptive molecular evolution of LTI pathway genes was important for Pooideae evolution. Substitution rates and signatures of positive selection were analyzed using 4330 gene trees including three warm climate-adapted species (maize (Zea mays), sorghum (Sorghum bicolor), and rice (Oryza sativa)) and five temperate Pooideae species (Brachypodium distachyon, wheat (Triticum aestivum), barley (Hordeum vulgare), Lolium perenne and Festuca pratensis).

View Article and Find Full Text PDF

In plants, flowering is a major biological phenomenon, which is regulated by an array of interactions occurring between biotic and abiotic factors. In our study, we have compared the expression profiles of flowering genes involved in the flowering pathway, which are influenced by conditions like photoperiod and temperature from seedling to heading developmental stages in two Oryza sativa indica varieties, viz., Zhenshan 97 and Minghui 63 using a expression network approach.

View Article and Find Full Text PDF

Background: Little is known about the potential of Brachypodium distachyon as a model for low temperature stress responses in Pooideae. The ice recrystallization inhibition protein (IRIP) genes, fructosyltransferase (FST) genes, and many C-repeat binding factor (CBF) genes are Pooideae specific and important in low temperature responses. Here we used comparative analyses to study conservation and evolution of these gene families in B.

View Article and Find Full Text PDF

Three Arabidopsis thaliana accessions originating from the northernmost boundary of the species distribution in Norway (59-68°N) were used to study global wide transcriptional responses to 16 and 24 h photoperiods during flower initiation. Significant analysis of microarrays (SAM), analyses of statistically overrepresented gene ontologies (GOstat) and gene set enrichment analyses (GSEA) were used to identify candidate genes and genetic pathways underlying phenotypic adaptations of accessions to different photoperiods. Statistical analyses identified 732 and 258 differentially expressed genes between accessions in 16 and 24 h photoperiod, respectively.

View Article and Find Full Text PDF

Quantitative trait loci (QTLs) for frost and drought tolerance, and winter survival in the field, were mapped in meadow fescue (Festuca pratensis Huds.) and compared with corresponding traits in Triticeae and rice to study co-location with putatively orthologous QTLs and known abiotic stress tolerance genes. The genomes of grass species are highly macrosyntenic; however, the Festuca/Lolium and Triticeae homoeologous chromosomes 4 and 5 show major structural differences that is especially interesting in comparative genomics of frost tolerance.

View Article and Find Full Text PDF

Posttranslational activation of nitrate reductase (NR) in Arabidopsis (Arabidopsis thaliana) and other higher plants is mediated by dephosphorylation at a specific Ser residue in the hinge between the molybdenum cofactor and heme-binding domains. The activation of NR in green leaves takes place after dark/light shifts, and is dependent on photosynthesis. Previous studies using various inhibitors pointed to protein phosphatases sensitive to okadaic acid, including protein phosphatase 2A (PP2A), as candidates for activation of NR.

View Article and Find Full Text PDF

Studies of differential gene expression between cold acclimated (CA) and non-cold acclimated (NA) plants yield insight into how plants prepare for cold stress at the transcriptional level. Furthermore genes involved in the cold acclimation process are good candidate loci for genetic variation in frost tolerance and winter survival. In this study we combine different approaches to try to decode the genetics of cold acclimation and frost tolerance in meadow fescue (Festuca pratensis Huds).

View Article and Find Full Text PDF

We review recent progress in understanding cold and freezing stress responses in forage grass species, notably Lolium and Festuca species. The chromosomal positions of important frost tolerance and winter survival QTLs on Festuca and Lolium chromosomes 4 and 5 are most likely orthologs of QTLs on Triticeae chromosome 5 which correspond to a cluster of CBF-genes and the major vernalization gene. Gene expression and protein accumulation analyses after cold acclimation shed light on general responses to cold stress.

View Article and Find Full Text PDF

Species belonging to the Festuca-Lolium complex are important forage and turf species and as such, have been studied intensively. However, their out-crossing nature and limited availability of molecular markers make genetic studies difficult. Here, we report on saturation of F.

View Article and Find Full Text PDF