Publications by authors named "Odd Gunnar Brakstad"

Oil spilled in the Arctic may drift into ice-covered areas and become trapped until the ice melts. To determine if exposure to oil during freezing may have a priming effect on degradation of the oil, weathered dispersed oil (2-3 mg/L) was frozen into solid ice for 200 days at -10 °C, then melted and incubated for 64 days at 4 °C. No degradation was measured in oil frozen into ice prior to melting.

View Article and Find Full Text PDF

Polymer injection is used in enhanced oil recovery (EOR) when an oil field ages and the pressure in the reservoir decreases, or for oil fields with heavy oil. By polymer injection, the viscosity of the water injected for pressure support is increased by mixing with a high concentration of a polymer solution. Polymers used in EOR operations are often high molecular weight polyacrylamides, including anionic polyacrylamide (APAM), which may subsequently enter the marine environment with produced water releases.

View Article and Find Full Text PDF

In this study, the formation and fate of oil-related aggregates (ORAs) from chemically dispersed oil in seawater (SW) were investigated at different temperatures (5 °C, 13 °C, 20 °C). Experiments in natural SW alone, and in SW amended with typical marine snow constituents (phytoplankton and mineral particles), showed that the presence of algae stimulated the formation of large ORAs, while high SW temperature resulted in faster aggregate formation. The ORAs formed at 5 °C and 13 °C required mineral particles for sinking, while the aggregates also sank in the absence of mineral particles at 20°.

View Article and Find Full Text PDF

The formation and fallout of oil-related marine snow have been associated with interactions between dispersed oil and small marine particles, like phytoplankton and mineral particles. In these studies, the influences of phytoplankton species, mineral particle concentration, and oil concentration on the aggregation of oil in seawater (SW) were investigated. The experiments were performed in a low-turbidity carousel incubation system, using natural SW at 13 °C.

View Article and Find Full Text PDF

For oil spilled at sea, the main weathering processes are evaporation, emulsification, photo-oxidation, dispersion and biodegradation. Of these, only biodegradation may completely remove hydrocarbons from the environment in the long term, as the other processes only serve to transform and dilute the oil components. As petroleum development is moving north, the probability of Arctic oil spills increases.

View Article and Find Full Text PDF

As ice extent in the Arctic is declining, oil and gas activities will increase, with higher risk of oil spills to the marine environment. To determine biotransformation of dispersed weathered oil in newly formed ice, oil dispersions (2-3 ppm) were incubated in a mixture of natural seawater and frazil ice for 125 days at -2 °C. Dispersed oil in seawater without frazil ice were included in the experimental setup.

View Article and Find Full Text PDF

When an oil field ages and the pressure in the reservoir decreases, or for oil fields with heavy oil, there may be a need for enhanced oil recovery (EOR) technologies. Polymer injection is a water-based EOR method where the viscosity of the water injected for pressure support is increased by mixing with a high concentration polymer solution. In this project, the potential fate of a synthetic anionic polyacrylamide (APAM) in seawater was investigated, since these EOR polymers may enter the marine environment with the produced water (PW).

View Article and Find Full Text PDF

Background: This study investigates a comparative multivariate approach for studying the biodegradation of chemically dispersed oil. The rationale for this approach lies in the inherent complexity of the data and challenges associated with comparing multiple experiments with inconsistent sampling points, with respect to inferring correlations and visualizing multiple datasets with numerous variables. We aim to identify novel correlations among microbial community composition, the chemical change of individual petroleum hydrocarbons, oil type and temperature by creating modelled datasets from inconsistent sampling time points.

View Article and Find Full Text PDF

Operational planned discharges of produced water (PW) to the marine environment from offshore oil production installations, contain low concentrations of dispersed oil compounds, like polycyclic aromatic hydrocarbons (PAHs) and alkylated phenols (APs). Biotransformation in natural seawater (SW) of naphthalenes/PAHs and phenol/APs in field-collected PW from a North Sea platform was investigated in this biodegradation study. The PW was diluted in SW from a Norwegian fjord, and the biodegradation study was performed in slowly rotating carousels at 13 °C over a period of 62 days.

View Article and Find Full Text PDF

Oil biodegradation as a weathering process has been extensively investigated over the years, especially after the Deepwater Horizon blowout. In this study, we performed microcosm experiments at 5 °C with chemically dispersed oil in non-amended seawater. We link biodegradation processes with microbial community and metagenome dynamics and explain the succession based on substrate specialization.

View Article and Find Full Text PDF

Biodegradation of chemically dispersed oil at low temperature (0-2 °C) was compared in natural seawater from Arctic (Svalbard) and a temperate (Norway) fjords. The oil was premixed with a dispersant (Corexit 9500) and small-droplet oil dispersions prepared. Faster biotransformation of n-alkanes in the Arctic than in the temperate seawater were associated with the initially higher abundance of the alkane-degrading genus Oleispira in the Arctic than the temperate seawater.

View Article and Find Full Text PDF

While biodegradation of chemically dispersed oil has been well documented, only a few studies have focused on the degradation of the dispersant compounds themselves. The objective of this study was to determine the biodegradation of dispersant surfactants in cold seawater, relevant for deep sea or Arctic conditions. Biotransformation of the surfactants dioctyl-sodium sulfosuccinate (DOSS), Tween 80, Tween 85, and α/β-ethylhexylsulfosuccinate (EHSS, expected DOSS hydrolysis product) in the commercial dispersants Corexit 9500, Dasic Slickgone NS and Finasol OSR52 were determined.

View Article and Find Full Text PDF

Microbial degradation following oil spills results in metabolites from the original oil. Metabolites are expected to display lower bioaccumulation potential and acute toxicity to marine organisms due to microbial-facilitated incorporation of chemical functional groups and a general decrease in lipophilicity. The toxicity and characterization of metabolites are poorly studied.

View Article and Find Full Text PDF

Oil biodegradation studies have mainly focused on microbial processes in dispersions, not specifically on the interfaces between the oil and the seawater in the dispersions. In this study, a hydrophobic adsorbent system, consisting of Fluortex fabrics, was used to investigate biodegradation of n-alkanes and microbial communities on oil-seawater interfaces in natural non-amended seawater. The study was performed over a temperature range from 0 to 20 °C, to determine how temperature affected biodegradation at the oil-seawater interfaces.

View Article and Find Full Text PDF

Field data from the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico (GoM) suggested that oxidation of gas compounds stimulated biodegradation of oil compounds in the deep sea plume. We performed experiments with local seawater from a Norwegian fjord to examine if the presence of dissolved gas compounds (methane, ethane and propane) affected biodegradation of volatile oil compounds, and if oil compounds likewise affected gas compound oxidation. The results from the experiment showed comparable oil compound biotransformation rates in seawater at 5 °C between seawater with and without soluble gases.

View Article and Find Full Text PDF

Produced water (PW) discharged to the marine environment may contain both natural substances and industrial chemicals that are potentially persistent, bioaccumulating and toxic (PBT). Identification of substances as PBT is dependent upon accurate assessment of biodegradation rates, but these measurements can be impeded where substances exhibit inherently low solubility in water. Examples of substances of this kind include some alkylated phenols (APs).

View Article and Find Full Text PDF

To determine biotransformation of components in crude oil dispersions in the presence of feces from marine copepods, dispersed oil was incubated alone, with the addition of clean or oil-containing feces. We hypothesized that the feces would contribute with nutrients to bacteria, and higher concentrations of oil-degrading bacteria, respectively. Presence of clean feces resulted in higher degradation of aromatic oil compounds, but lower degradation of n-alkanes.

View Article and Find Full Text PDF

Zooplankton are suggested to be biotic contributors to the transport and weathering of oil in marine environments due to their ingestion of oil. In the present experiment, feeding activity and microbial communities in feces from Calanus finmarchicus feeding in oil dispersions were characterized. Feeding activity was significantly reduced in oil dispersions.

View Article and Find Full Text PDF

Crude oil is a complex mixture of compounds of which the water-soluble fraction (WSF) is considered to be bioavailable and potentially toxic to aquatic biota. Containing numerous compounds, WSF becomes a source of multiple chemical stressors to wildlife when introduced into the environment. To study the combined effects of WSF components on aquatic biota, the model species zebrafish (Danio rerio Hamilton) was exposed for 24 or 72 h to 10 or 50% WSF solution of known composition, generated from artificially weathered North Sea crude oil.

View Article and Find Full Text PDF

Offshore oil & gas industry is moving exploration and production activities into Arctic and deep water regions. Governmental regulations require environmental impact assessments before operations to evaluate the possible effects of accidental oil releases. These are often performed by numerical fate models, like the Oil Spill Contingency and Response (OSCAR) model, which has become an industry standard in Norway.

View Article and Find Full Text PDF

Alkanolamines are surface-active chemicals used in a wide range of industrial, agricultural and pharmaceutical applications and products. Of particular interest is the use of alkanolamines such as diethanolamine (DEA) in the removal of CO(2) from natural gas and for CO(2) capture following fossil fuel combustion. Despite this widespread use, relatively little is known about the ecotoxicological impacts of these compounds.

View Article and Find Full Text PDF

Recent studies have indicated that oil reservoirs harbour diverse microbial communities. Culture-dependent and culture-independent methods were used to evaluate the microbial diversity in produced water samples of the Ekofisk oil field, a high temperature, and fractured chalk reservoir in the North Sea. DGGE analyses of 16S rRNA gene fragments were used to assess the microbial diversity of both archaeal and bacterial communities in produced water samples and enrichment cultures from 4 different wells (B-08, X-08, X-18 and X-25).

View Article and Find Full Text PDF

The induction of CYP enzyme activities, particularly CYP1A1, through the aryl hydrocarbon receptor (AhR) in most vertebrate species is among the most studied biochemical response to planar and aromatic organic contaminant exposure. Since P450 families play central roles in the oxidative metabolism of a wide range of exogenous and endogenous compounds, interactions between the biotransformation processes and reproductive physiological responses are inevitable. Steroidogenesis is the process by which specialized cells in specific tissues, such as the gonad, brain (neurosteroids) and kidney, synthesize steroid hormones.

View Article and Find Full Text PDF

Microbial communities associated with Arctic fjord ice polluted with petroleum oils were investigated in this study. A winter field experiment was conducted in the Van Mijen Fjord (Svalbard) from February to June 2004, in which the ice was contaminated with a North Sea paraffinic oil. Holes were drilled in the ice and oil samples frozen into the ice at the start of the experiment.

View Article and Find Full Text PDF