ACS Sustain Chem Eng
February 2023
The effect of ultrafine fly ash (UFA) and fly ash (FA) on the physical properties, phase assemblage, and microstructure of magnesium potassium phosphate cement (MKPC) was investigated. This study revealed that the UFA addition does not affect the calorimetry hydration peak associated with MKPC formation when normalized to the reactive components (MgO and KHPO). However, there is an indication that greater UFA additions lead to an increased reaction duration, suggesting the potential formation of secondary reaction products.
View Article and Find Full Text PDFRadioactive waste streams containing Sr, from nuclear power generation and environmental cleanup operations, are often immobilised in cements to limit radionuclide leaching. Due to poor compatibility of certain wastes with Portland cement, alternatives such as alkali aluminosilicate 'geopolymers' are being investigated. Here, we show that the disordered geopolymers ((N,K)-A-S-H gels) formed by alkali-activation of metakaolin can readily accommodate the alkaline earth cations Sr and Ca into their aluminosilicate framework structure.
View Article and Find Full Text PDFThis study evaluates the chloride binding capacity and the migration of chloride in sodium carbonate-activated slag cements and mortars. The effect on chloride mobility and binding of adding a calcined layered double hydroxide (CLDH) to the binder mix was also assessed. Significantly improved durability characteristics can be achieved for sodium carbonate-activated slag mortars by the addition of small fractions of CLDH, as a consequence of a higher degree of reaction, higher chloride binding capacity, and the refined pore structures present in these modified materials, in comparison with alkali-activated cements produced without CLDH.
View Article and Find Full Text PDF