Publications by authors named "Octavio Manero"

Background: Polymeric electrospun mats have been used as scaffolds in tissue engineering for the development of novel materials due to its characteristics. The usage of synthetic materials has gone in decline due to environmental problems associated with their synthesis and waste disposal. Biomaterials such as biopolymers have been used recently due to good compatibility on biological applications and sustainability.

View Article and Find Full Text PDF
Article Synopsis
  • The study addresses the limitations of high flame-retardant loading in ethylene-vinyl acetate copolymer blends with polyethylene (EVA-PE) for electric cable insulation.
  • Researchers explored the use of melamine triazine and modified bentonite clay combined with aluminum trihydroxide to enhance fire safety and mechanical properties of EVA-PE composites.
  • Optimized formulations require less aluminum trihydroxide while achieving self-extinguishing properties and improved mechanical performance, leading to better processability and cost-effectiveness.
View Article and Find Full Text PDF

In this work, we prepared a novel composite based on hybrid gelatin carriers and montmorillonite clay (MMT) to analyze its viability as controlled drug delivery system. The objective of this research involves the characterization of composites formed by structured lipid-gelatin micro-particles (MP) and MMT clay. This analysis included the evaluation of the composite according to its rheological properties, morphology (SEM), particle size, XRD, FT-IR, and in vitro drug release.

View Article and Find Full Text PDF

In this contribution a methodology to compute and classify shear-induced structural and phase transitions in surfactant/water mixtures from rheological measurements is presented. Non-linear rheological experiments, considering variations in surfactant concentration and temperature, are analyzed. In particular, the parameters of the BMP (Bautista-Manero-Puig) model, obtained from the fitting of the shear stress versus shear rate data, which are functions of surfactant concentration and temperature, allow classifying structural and phase transition boundaries.

View Article and Find Full Text PDF

Equilibrium and non-equilibrium molecular dynamics were performed to determine the relationship between the static structure factor, the molecular conformation, and the rheological properties of chain molecules. A spring-monomer model with Finitely Extensible Nonlinear Elastic and Lennard-Jones force field potentials was used to describe chain molecules. The equations of motion were solved for shear flow with SLLOD equations of motion integrated with Verlet's algorithm.

View Article and Find Full Text PDF

BaSO(4) nanostructures with controlled morphologies were successfully produced via one-step process through precipitation of BaSO(4) in aqueous and organic media. The synthesis is carried out by mixing solutions of BaCl(2) and Na(2)SO(4) in presence of EDTA (disodium ethylenediaminetetraacetic acid) at room temperature. The influence of the reaction conditions such as initial reactants concentration, pH, EDTA/[Ba(2+)] ratio and aging on the BaSO(4) nanoparticles organization is studied.

View Article and Find Full Text PDF

The shear-banding flow in polymer-like micellar solutions is examined here with the generalized Bautista-Manero-Puig model. The coupling between flow and diffusion naturally arises in this model, which is derived from the extended irreversible thermodynamic formalism. The limit of an abrupt interface is treated here.

View Article and Find Full Text PDF

Nonequilibrium molecular-dynamics simulations are performed for linear and branched chain molecules to study their rheological and structural properties under simple shear and Poiseuille flows. Molecules are described by a spring-monomer model with a given intermolecular potential. The equations of motion are solved for shear and Poiseuille flows with Lees and Edward's [A.

View Article and Find Full Text PDF