Publications by authors named "Octavia M Gil"

Purpose: In case of a mass-casualty radiological event, there would be a need for networking to overcome surge limitations and to quickly obtain homogeneous results (reported aberration frequencies or estimated doses) among biodosimetry laboratories. These results must be consistent within such network. Inter-laboratory comparisons (ILCs) are widely accepted to achieve this homogeneity.

View Article and Find Full Text PDF

Radioiodine therapy with I remains the mainstay of standard treatment for well-differentiated thyroid cancer (DTC). Prognosis is good but concern exists that I-emitted ionizing radiation may induce double-strand breaks in extra-thyroidal tissues, increasing the risk of secondary malignancies. We, therefore, sought to evaluate the induction and 2-year persistence of micronuclei (MN) in lymphocytes from 26 I-treated DTC patients and the potential impact of nine homologous recombination (HR), non-homologous end-joining (NHEJ), and mismatch repair (MMR) polymorphisms on MN levels.

View Article and Find Full Text PDF

The incidence of thyroid cancer (TC), particularly well-differentiated forms (DTC), has been rising and remains the highest among endocrine malignancies. Although ionizing radiation (IR) is well established on DTC aetiology, other environmental and genetic factors may also be involved. DNA repair single nucleotide polymorphisms (SNPs) could be among the former, helping in explaining the high incidence.

View Article and Find Full Text PDF

CuCl₂ has recently been proposed as a promising agent for prostate cancer (PCa) theranostics, based on preclinical studies in cellular and animal models, and on the increasing number of human studies documenting its use for PCa diagnosis. Nevertheless, the use of CuCl₂ raises important radiobiological questions that have yet to be addressed. In this work, using a panel of PCa cell lines in comparison with a non-tumoral prostate cell line, we combined cytogenetic approaches with radiocytotoxicity assays to obtain significant insights into the cellular consequences of exposure to CuCl₂.

View Article and Find Full Text PDF

There is a continued need for further clarification of various aspects of radiation-induced chromosomal aberration, including its correlation with radiation track structure. As part of the EMRP joint research project, Biologically Weighted Quantities in Radiotherapy (BioQuaRT), we performed experimental and theoretical analyses on chromosomal aberrations in Chinese hamster ovary cells (CHO-K1) exposed to α particles with final energies of 5.5 and 17.

View Article and Find Full Text PDF

Thyroid cancer (TC) is the most common endocrine malignancy and its incidence continues to rise worldwide. Ionizing radiation exposure is the best established etiological factor. Heritability is high; however, despite valuable contribution from recent genome-wide association studies, the current understanding of genetic susceptibility to TC remains limited.

View Article and Find Full Text PDF

Purpose: RENEB, 'Realising the European Network of Biodosimetry and Physical Retrospective Dosimetry,' is a network for research and emergency response mutual assistance in biodosimetry within the EU. Within this extremely active network, a number of new dosimetry methods have recently been proposed or developed. There is a requirement to test and/or validate these candidate techniques and inter-comparison exercises are a well-established method for such validation.

View Article and Find Full Text PDF

Acrylamide (AA) is a well-known industrial chemical classified as a probable human carcinogen. Benign and malignant tumours at different sites, including the mammary gland, have been reported in rodents exposed to AA. This xenobiotic is also formed in many carbohydrate-rich foods prepared at high temperatures.

View Article and Find Full Text PDF

Well-differentiated thyroid cancer (DTC) is the most common form of thyroid cancer (TC); however, with the exception of radiation exposure, its etiology remains largely unknown. Several single nucleotide polymorphisms (SNPs) have previously been implicated in DTC risk. Nucleotide excision repair (NER) polymorphisms, despite having been associated with cancer risk at other locations, have received little attention in the context of thyroid carcinogenesis.

View Article and Find Full Text PDF

Thyroid cancer (TC) is the most frequent endocrine malignancy, accounting however for only 1-2% of all human cancers, and the best-established risk factor for TC is radiation exposure, particularly during childhood. Since the BER pathway seems to play an important role in the repair of DNA damage induced by IR and other genotoxicants, we carried out a hospital-based case-control study in order to evaluate the potential modifying role of 6 BER polymorphisms on the individual susceptibility to non-familial TC in 109 TC patients receiving iodine-131, and 217 controls matched for age (± 2 years), gender and ethnicity. Our results do not reveal a significant involvement of XRCC1 Arg194Trp and Arg399Gln, OGG1 Ser326Cys, APEX1 Asp148Glu, MUTYH Gln335His and PARP1 Val762Ala polymorphisms on the individual susceptibility towards TC, mostly in agreement with the limited available evidence.

View Article and Find Full Text PDF

Variations, such as single nucleotide polymorphisms (SNPs) in DNA damage repair genes have been pointed out as possible factors to cancer predisposition. Ionizing radiation (IR) induces DNA double strand breaks (DSBs) and is the main recognized risk factor for thyroid cancer. However, most of the patients do not show chronic contact with IR and the other factors have non-concordant data.

View Article and Find Full Text PDF

Background: Ionizing radiation exposure has been pointed out as a risk factor for thyroid cancer. The double-strand breaks induced by this carcinogen are usually repaired by homologous recombination repair pathway, a pathway that includes several polymorphic genes. Since there is a scarcity of data about the involvement of these gene polymorphisms in thyroid cancer susceptibility, we carried out a case-control study in a Caucasian Portuguese population.

View Article and Find Full Text PDF

The ERCC2 protein is an evolutionary conserved ATP-dependent helicase that is associated with a TFIIH transcription factor complex and plays an important role in nucleotide excision repair. Mutations in this gene are responsible for xeroderma pigmentosum and also for Cocayne syndrome and trichothiodystrophy. Several single nucleotide polymorphisms have been identified in the ERCC2 locus.

View Article and Find Full Text PDF

Since exposure to ionizing radiation, a risk factor for thyroid cancer, may produce genotoxins potentially eliminated by glutathione-S-transferases, we conducted a case control study to evaluate the role of the GSTM1- and GSTT1-null genotypes and GSTP1 polymorphisms in thyroid cancer. The frequency of GSTP1 Ile/Ile, GSTM1-, and GSTT1-null genotypes was increased in cancer patients when compared with control population. Considering the genotypes over-represented in thyroid cancer patients as potential risk genotypes, we carried out an odds ratio (OR) analysis considering the presence of none, one, two, or three risk genotypes.

View Article and Find Full Text PDF

The fungal metabolite wortmannin (WM) is a potent and irreversible inhibitor of the enzyme DNA-dependent protein kinase (DNA-PK), a nuclear serine-threonine kinase, member of the phosphaditylinositol-3 kinase related kinase family. WM has been used in the last few years as a promising radiosensitizer mainly throughout cell survival experiments. However, few studies have addressed the role of DNA-PK inhibition in the repair of DNA lesions generated by antitumor agents.

View Article and Find Full Text PDF