Background: The RTS,S/AS01E (RTS,S) malaria vaccine is recommended for children in malaria endemic areas. This phase 2b trial evaluates RTS,S fractional- and full-dose regimens in Ghana and Kenya.
Methods: In total, 1500 children aged 5-17 months were randomized (1:1:1:1:1) to receive RTS,S or rabies control vaccine.
Over 75% of malaria-attributable deaths occur in children under the age of 5 years. However, the first malaria vaccine recommended by the World Health Organization (WHO) for pediatric use, RTS,S/AS01 (Mosquirix), has modest efficacy. Complementary strategies, including monoclonal antibodies, will be important in efforts to eradicate malaria.
View Article and Find Full Text PDFBackground: The only licensed malaria vaccine, RTS,S/AS01 , confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy (VE).
Methods: 1,500 children aged 5-17 months were randomized to receive four different RTS,S/AS01 regimens or a rabies control vaccine in a phase 2b clinical trial in Ghana and Kenya.
Background: Seasonal vaccination with the RTS,S/AS01 vaccine combined with seasonal malaria chemoprevention (SMC) prevented malaria in young children more effectively than either intervention given alone over a 3 year period. The objective of this study was to establish whether the added protection provided by the combination could be sustained for a further 2 years.
Methods: This was a double-blind, individually randomised, controlled, non-inferiority and superiority, phase 3 trial done at two sites: the Bougouni district and neighbouring areas in Mali and Houndé district, Burkina Faso.
Transmission-blocking interventions can play an important role in combating malaria worldwide. Recently, a highly potent Plasmodium falciparum transmission-blocking monoclonal antibody (TB31F) was demonstrated to be safe and efficacious in malaria-naive volunteers. Here we predict the potential public health impact of large-scale implementation of TB31F alongside existing interventions.
View Article and Find Full Text PDFBackground: Whole sporozoite immunization under chemoprophylaxis (CPS regime) induces long-lasting sterile homologous protection in the controlled human malaria infection model using Plasmodium falciparum strain NF54. The relative proficiency of liver-stage parasite development may be an important factor determining immunization efficacy. Previous studies show that Plasmodium falciparum strain NF135 produces relatively high numbers of large liver-stage schizonts in vitro.
View Article and Find Full Text PDFBackground: Malaria elimination requires interruption of the highly efficient transmission of Plasmodium parasites by mosquitoes. TB31F is a humanised monoclonal antibody that binds the gamete surface protein Pfs48/45 and inhibits fertilisation, thereby preventing further parasite development in the mosquito midgut and onward transmission. We aimed to evaluate the safety and efficacy of TB31F in malaria-naive participants.
View Article and Find Full Text PDFThe timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy.
View Article and Find Full Text PDFBackground: Fever and inflammation are a hallmark of clinical Plasmodium falciparum (Pf) malaria induced by circulating asexual parasites. Although clinical manifestations of inflammation are associated with parasite density, this relationship is influenced by a complex network of immune-modulating factors of both human and parasite origin.
Methods: In the Controlled Human Malaria infection (CHMI) model, we compared clinical inflammation in healthy malaria-naïve volunteers infected by either Pf-infected mosquito bites (MB, n=12) or intravenous administration of Pf-infected red blood cells (BS, n=12).
The populations of moderate or highly malaria endemic areas gradually acquire some immunity to malaria as a result of repeated exposure to the infection. When this exposure is reduced as a result of effective malaria control measures, subjects who benefitted from the intervention may consequently be at increased risk of malaria if the intervention is withdrawn, especially if this is done abruptly, and an effective malaria vector remains. There have been many examples of this occurring in the past, a phenomenon often termed 'rebound malaria', with the incidence of malaria rebounding to the level present before the intervention was introduced.
View Article and Find Full Text PDFBackground: A recent trial in Burkina Faso and Mali showed that combining seasonal RTS,S/AS01 malaria vaccination with seasonal malaria chemoprevention (SMC) substantially reduced the incidence of uncomplicated and severe malaria in young children compared to either intervention alone. Given the possible negative effect of malaria on nutrition, the study investigated whether these children also experienced lower prevalence of acute and chronic malnutrition.
Methods: In Burkina Faso and Mali 5920 children were randomized to receive either SMC alone, RTS,S/AS01 alone, or SMC combined with RTS,S/AS01 for three malaria transmission seasons (2017-2019).
Background: A trial in African children showed that combining seasonal vaccination with the RTS,S/AS01E vaccine with seasonal malaria chemoprevention reduced the incidence of uncomplicated and severe malaria compared with either intervention given alone. Here, we report on the anti-circumsporozoite antibody response to seasonal RTS,S/AS01E vaccination in children in this trial.
Methods: Sera from a randomly selected subset of children collected before and 1 month after 3 priming doses of RTS,S/AS01E and before and 1 month after 2 seasonal booster doses were tested for anti-circumsporozoite antibodies using enzyme-linked immunosorbent assay.
Background: We previously demonstrated that RTS,S/AS01 and RTS,S/AS01 vaccination regimens including at least one delayed fractional dose can protect against Plasmodium falciparum malaria in a controlled human malaria infection (CHMI) model, and showed inferiority of a two-dose versus three-dose regimen. In this follow-on trial, we evaluated whether fractional booster vaccination extended or induced protection in previously protected (P-Fx) or non-protected (NP-Fx) participants.
Methods: 49 participants (P-Fx: 25; NP-Fx: 24) received a fractional (1/5th dose-volume) RTS,S/AS01 booster 12 months post-primary regimen.
Background: Malaria control remains a challenge in many parts of the Sahel and sub-Sahel regions of Africa.
Methods: We conducted an individually randomized, controlled trial to assess whether seasonal vaccination with RTS,S/AS01 was noninferior to chemoprevention in preventing uncomplicated malaria and whether the two interventions combined were superior to either one alone in preventing uncomplicated malaria and severe malaria-related outcomes.
Results: We randomly assigned 6861 children 5 to 17 months of age to receive sulfadoxine-pyrimethamine and amodiaquine (2287 children [chemoprevention-alone group]), RTS,S/AS01 (2288 children [vaccine-alone group]), or chemoprevention and RTS,S/AS01 (2286 children [combination group]).
RTS,S/AS01 (GSK) is the world's first malaria vaccine. However, despite initial efficacy of almost 70% over the first 6 months of follow-up, efficacy waned over time. A deeper understanding of the immune features that contribute to RTS,S/AS01-mediated protection could be beneficial for further vaccine development.
View Article and Find Full Text PDFTrials
October 2020
Objectives: To evaluate the efficacy of two doses of the adsorbed vaccine COVID-19 (inactivated) produced by Sinovac in symptomatic individuals, with virological confirmation of COVID-19, two weeks after the completion of the two-dose vaccination regimen, aged 18 years or older who work as health professionals providing care to patients with possible or confirmed COVID-19. To describe the occurrence of adverse reactions associated with the administration of each of two doses of the adsorbed vaccine COVID-19 (inactivated) produced by Sinovac up to one week after vaccination in Adults (18-59 years of age) and Elderly (60 years of age or more).
Trial Design: This is a Phase III, randomized, multicenter, endpoint driven, double-blind, placebo-controlled clinical trial to assess the efficacy and safety of the adsorbed vaccine COVID-19 (inactivated) produced by Sinovac.
Anti-circumsporozoite antibody titres have been established as an essential indicator for evaluating the immunogenicity and protective capacity of the RTS,S/AS01 malaria vaccine. However, a new delayed-fractional dose regime of the vaccine was recently shown to increase vaccine efficacy, from 62.5% (95% CI 29.
View Article and Find Full Text PDFBackground: A previous RTS,S/AS01B vaccine challenge trial demonstrated that a 3-dose (0-1-7-month) regimen with a fractional third dose can produce high vaccine efficacy (VE) in adults challenged 3 weeks after vaccination. This study explored the VE of different delayed fractional dose regimens of adult and pediatric RTS,S/AS01 formulations.
Methods: A total of 130 participants were randomized into 5 groups.
For some diseases, successful vaccines have been developed using a nonpathogenic counterpart of the causative microorganism of choice. The nonpathogenicity of the rodent () parasite in humans prompted us to evaluate its potential as a platform for vaccination against human infection by (), a causative agent of malaria. We hypothesized that the genetic insertion of a leading protein target for clinical development of a malaria vaccine, circumsporozoite protein (CSP), in its natural pre-erythrocytic environment, would enhance 's capacity to induce protective immunity against infection.
View Article and Find Full Text PDFThe RTS,S/AS01 vaccine provides partial protection against infection but determinants of protection and/or disease are unclear. Previously, anti-circumsporozoite protein (CSP) antibody titers and blood RNA signatures were associated with RTS,S/AS01 efficacy against controlled human malaria infection (CHMI). By analyzing host blood transcriptomes from five RTS,S vaccination CHMI studies, we demonstrate that the transcript ratio MX2/GPR183, measured 1 day after third immunization, discriminates protected from non-protected individuals.
View Article and Find Full Text PDFBackground: For malaria elimination efforts, it is important to better understand parasite transmission to mosquitoes and develop models for early-clinical evaluation of transmission-blocking interventions.
Methods: In a randomized open-label trial, 24 participants were infected by bites from Plasmodium falciparum 3D7-infected mosquitoes (mosquito bite [MB]; n = 12) or by induced blood-stage malaria (IBSM) with the same parasite line (n = 12). After subcurative piperaquine treatment, asexual parasite and gametocytes kinetics were assessed, and mosquito feeding experiments were performed.