Monitoring agriculture by remote sensing enables large-scale evaluation of biomass production across space and time. The normalized difference vegetation index (NDVI) is used as a proxy for green biomass. Here, we used satellite-derived NDVI of arable farms in the Netherlands to evaluate changes in biomass following conversion from conventional to organic farming.
View Article and Find Full Text PDFThe rhizosphere influence on the soil microbiome and function of crop wild progenitors (CWPs) remains virtually unknown, despite its relevance to develop microbiome-oriented tools in sustainable agriculture. Here, we quantified the rhizosphere influence-a comparison between rhizosphere and bulk soil samples-on bacterial, fungal, protists and invertebrate communities and on soil multifunctionality across nine CWPs at their sites of origin. Overall, rhizosphere influence was higher for abundant taxa across the four microbial groups and had a positive influence on rhizosphere soil organic C and nutrient contents compared to bulk soils.
View Article and Find Full Text PDFThe capacity for terrestrial ecosystems to sequester additional carbon (C) with rising CO concentrations depends on soil nutrient availability. Previous evidence suggested that mature forests growing on phosphorus (P)-deprived soils had limited capacity to sequester extra biomass under elevated CO (refs. ), but uncertainty about ecosystem P cycling and its CO response represents a crucial bottleneck for mechanistic prediction of the land C sink under climate change.
View Article and Find Full Text PDFThe breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI).
View Article and Find Full Text PDFEmerging evidence points out that the responses of soil organic carbon (SOC) to nitrogen (N) addition differ along the soil profile, highlighting the importance of synthesizing results from different soil layers. Here, using a global meta-analysis, we found that N addition significantly enhanced topsoil (0-30 cm) SOC by 3.7% (±1.
View Article and Find Full Text PDFSpringtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised.
View Article and Find Full Text PDFIncreased atmospheric nitrogen (N) deposition affects biodiversity in terrestrial ecosystems. However, we do not know whether the effects of N on above-ground plant β-diversity are coupled with changes occurring in the soil seed bank. We conducted a long-term N-addition experiment in a typical steppe and found that above-ground β-diversity increased and then decreased with increasing N addition, whereas below-ground β-diversity decreased linearly.
View Article and Find Full Text PDFMicrobes inhabiting deep soil layers are known to be different from their counterpart in topsoil yet remain under investigation in terms of their structure, function, and how their diversity is shaped. The microbiome of deep soils (>1 m) is expected to be relatively stable and highly independent from climatic conditions. Much less is known, however, on how these microbial communities vary along climate gradients.
View Article and Find Full Text PDFHuman activities cause substantial changes in biodiversity. Despite ongoing concern about the implications of invertebrate decline, few empirical studies have examined the ecosystem consequences of invertebrate biomass loss. Here, we test the responses of six ecosystem services informed by 30 above- and belowground ecosystem variables to three levels of aboveground (i.
View Article and Find Full Text PDFThe decomposition of litter and the supply of nutrients into and from the soil are two fundamental processes through which the above- and belowground world interact. Microbial biodiversity, and especially that of decomposers, plays a key role in these processes by helping litter decomposition. Yet the relative contribution of litter diversity and soil biodiversity in supporting multiple ecosystem services remains virtually unknown.
View Article and Find Full Text PDFSoil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown.
View Article and Find Full Text PDFBiological soil crusts (BSC) are associations of different macro and microorganisms and aggregated soil particles located on the surface of soils in many different habitats. BSC harbour a diverse and complex community of ciliates and testate amoebae. These phagotrophic protists play an important role in C and N recycling in soil ecosystems but have not been frequently studied in BSC.
View Article and Find Full Text PDFCurrent and continuing climate change in the Anthropocene epoch requires sustainable agricultural practices. Additionally, due to changing consumer preferences, organic approaches to cultivation are gaining popularity. The global market for organic grapes, grape products, and wine is growing.
View Article and Find Full Text PDFSoil carbon (C) stabilization partially depends on its distribution within soil structural aggregates, and on the physicochemical processes of C within these aggregates. Changes in precipitation can alter the size distribution of aggregate classes within soils, and C input and output processes within these aggregates, which have potential consequences for soil C storage. However, the mechanisms underlying C accumulation within different aggregates under various precipitation regimes remain unclear.
View Article and Find Full Text PDFThe growing demand for timber and the boom in massive tree-planting programs could mean the spreading of mismanaged tree plantations worldwide. Here, we apply the concept of ecological intensification to forestry systems as a viable biodiversity-focused strategy that could be critical to develop productive, yet sustainable, tree plantations. Tree plantations can be highly productive if tree species are properly combined to complement their ecological functions.
View Article and Find Full Text PDFSpatial rarity is often used to predict extinction risk, but rarity can also occur temporally. Perhaps more relevant in the context of global change is whether a species is core to a community (persistent) or transient (intermittently present), with transient species often susceptible to human activities that reduce niche space. Using 5-12 yr of data on 1,447 plant species from 49 grasslands on five continents, we show that local abundance and species persistence under ambient conditions are both effective predictors of local extinction risk following experimental exclusion of grazers or addition of nutrients; persistence was a more powerful predictor than local abundance.
View Article and Find Full Text PDFBackground: Climate change models predict changes in the amount, frequency and seasonality of precipitation events, all of which have the potential to affect the structure and function of grassland ecosystems. While previous studies have examined plant or herbivore responses to these perturbations, few have examined their interactions; even fewer have included belowground herbivores. Given the ecological, economic and biodiversity value of grasslands, and their importance globally for carbon storage and agriculture, this is an important knowledge gap.
View Article and Find Full Text PDFDespite their extent and socio-ecological importance, a comprehensive biogeographical synthesis of drylands is lacking. Here we synthesize the biogeography of key organisms (vascular and nonvascular vegetation and soil microorganisms), attributes (functional traits, spatial patterns, plant-plant and plant-soil interactions) and processes (productivity and land cover) across global drylands. These areas have a long evolutionary history, are centers of diversification for many plant lineages and include important plant diversity hotspots.
View Article and Find Full Text PDFThe biogeochemical cycling of multiple soil elements is fundamental for life on Earth. Here, we conducted a global field survey across 16 chronosequences from contrasting biomes with soil ages ranging from centuries to millions of years. For this, we collected and analysed 435 topsoil samples (0-10 cm) from 87 locations.
View Article and Find Full Text PDF