Evidence is shown that cosolvent mixtures control the coacervation of mixtures of oppositely charged polyelectrolytes. Binary and ternary solvent mixtures lead to non-monotonic solubility as a function of the average dielectric constants of the solvent mixtures. These data are rationalized by considering both electrostatic-driven phase separation and solvophobic-driven phase separation using group contribution effects on solubility parameters.
View Article and Find Full Text PDFThe absorption of CO by polyethylenimine polymer (PEI) materials is of great interest in connection with proposed carbon capture technologies, and the successful development of this technology requires testing methods quantifying the amount of CO, HO, and reaction byproducts under operating conditions. We anticipate that dielectric measurements have the potential for quantifying both the extent of CO and HO absorption within the PEI matrix material as well as insights into subsequent reaction byproducts that can be expected to occur in the presence of moisture. The complexity of the chemistry involved in this reactive binding process clearly points to the need for the use of additional spectroscopic techniques to better resolve the multiple components involved and to validate the model-dependent findings from the dielectric measurements.
View Article and Find Full Text PDFThe negative effect of caponization on the structural, geometric and mechanical parameters of femur and tibia has been shown in a few studies. Nevertheless, its influence on tibia bone microarchitecture is still largely unknown. Therefore, this study aimed to assess the effect of castration on the microstructural parameters of the trabecular and compact bone of tibia bone in crossbred chickens.
View Article and Find Full Text PDFThe presented study focuses on assessing the effect of caponization on the densitometric, osteometric, geometric and biomechanical parameters of tibial bones in crossbred chickens. The study was carried out on 96 hybrids between Yellowleg Partridge hens (Ż-33) and Rhode Island Red cockerels (R-11) aged 16 weeks, 20 weeks and 24 weeks. Birds were randomly assigned to 2 groups-the control group (n = 48; which consisted of intact roosters) and the experimental group (n = 48, which consisted of individuals subjected to caponization at the age of 8 weeks).
View Article and Find Full Text PDFThe study aimed to determine the effect of castration on physicochemical properties of meat from capons derived from the crossing of Rhode Island Red (R-11) hens and meat roosters. Subjects were 100 crossbred cockerels, which were randomly assigned to 2 groups of 50 each. Group I (control) consisted of intact cockerels and birds from group II were subjected to castration.
View Article and Find Full Text PDFPolymer nanocomposites containing self-assembled cellulose nanocrystals (CNCs) are ideal for advanced applications requiring both strength and toughness as the helicoidal structure of the CNCs deflects crack propagation and the polymer matrix dissipates impact energy. However, any adsorbed water layer surrounding the CNCs may compromise the interfacial adhesion between the polymer matrix and the CNCs, thus impacting stress transfer at that interface. Therefore, it is critical to study the role of water at the interface in connecting the polymer dynamics and the resulting mechanical performance of the nanocomposite.
View Article and Find Full Text PDFSpecific and tunable modification to the optical properties of single-wall carbon nanotubes (SWCNTs) is demonstrated through direct encapsulation into the nanotube interior of guest molecules with widely varying static dielectric constants. Filled through simple ingestion of the guest molecule, each SWCNT population is demonstrated to display a robust modification to absorbance, fluorescence, and Raman spectra. Over 30 distinct compounds, covering static dielectric constants from 1.
View Article and Find Full Text PDFWe investigated a chemically modified rhodamine B dye as a sensor of local water content in dye-modified epoxy resins, where these measurements were combined with dielectric measurements to estimate the dye-water association ratio in the material. In particular, the water-sensitive fluorogenic dye was covalently attached to the epoxy resin backbone. This dye becomes fluorescent only upon photoactivation by ultraviolet light and its protonation in the presence of water.
View Article and Find Full Text PDFJ Mater Chem C Mater
January 2020
Solution-processed graphene inks that use ethyl cellulose as a polymer stabilizer are blade-coated into large-area thin films. Following blade-coating, the graphene thin films are cured to pyrolyze the cellulosic polymer, leaving behind an sp-rich amorphous carbon residue that serves as a binder in addition to facilitating charge transport between graphene flakes. Systematic charge transport measurements, including temperature-dependent Hall effect and non-contact microwave resonant cavity characterization, reveal that the resulting electrically percolating graphene thin films possess high mobility (≈ 160 cm V s), low energy gap, and thermally activated charge transport, which develop weak localization behavior at cryogenic temperatures.
View Article and Find Full Text PDFThe current analytical techniques for characterizing printing and graphic arts substrates are largely ex situ and destructive. This limits the amount of data that can be obtained from an individual sample and renders it difficult to produce statistically relevant data for unique and rare materials. Resonant cavity dielectric spectroscopy is a non-destructive, contactless technique which can simultaneously interrogate both sides of a sheeted material and provide measurements which are suitable for statistical interpretations.
View Article and Find Full Text PDFThe current analytical techniques for characterizing printing and graphic arts substrates, particularly those used to date and authenticate provenance, are destructive. This limits the amount of data that can be captured from an individual sample. For samples being evaluated in forensic and archeological investigations, any loss or degradation of the materials is undesirable.
View Article and Find Full Text PDFThe information provided in this data article will cover the growth parameters for monolayer, epitaxial graphene, as well as how to verify the layer homogeneity by confocal laser scanning and optical microscopy. The characterization of the subsequently fabricated quantum Hall device is shown for example cases during a series of environmental exposures. Quantum Hall data acquired from a CYTOP encapsulation is also provided.
View Article and Find Full Text PDFHomogeneous, single-crystal, monolayer epitaxial graphene (EG) is the one of most promising candidates for the advancement of quantized Hall resistance (QHR) standards. A remaining challenge for the electrical characterization of EG-based quantum Hall devices as a useful tool for metrology is that they are electrically unstable when exposed to air due to the adsorption of and interaction with atmospheric molecular dopants. The resulting changes in the charge carrier density become apparent by variations in the surface conductivity, the charge carrier mobility, and may result in a transition from n-type to p-type conductivity.
View Article and Find Full Text PDFMost attempts to emulate the mechanical properties of strong and tough natural composites using helicoidal films of wood-derived cellulose nanocrystals (w-CNCs) fall short in mechanical performance due to the limited shear transfer ability between the w-CNCs. This shortcoming is ascribed to the small w-CNC-w-CNC overlap lengths that lower the shear transfer efficiency. Herein, we present a simple strategy to fabricate superior helicoidal CNC films with mechanical properties that rival those of the best natural materials and are some of the best reported for photonic CNC materials thus far.
View Article and Find Full Text PDFUnlabelled: Current product composition and quality test methods for the paper and pulp industry are mainly based on manual ex-situ wet-bench chemistry techniques. For example, the standard method for determining the furnish of paper, TAPPI T 401 "Fiber analysis of paper and paperboard," relies on the experience and visual acuity of a specially trained analyst to determine the individual plant species present and to quantify the amount of each constituent fiber type in a sheet of paper. Thus, there is a need for a fast, nondestructive analytical technique that leverages intrinsic attributes of the analytes.
View Article and Find Full Text PDFLiposarcoma is a malignant soft tissue tumor that originates from adipose tissue and is one of the most frequently diagnosed soft tissue sarcomas in humans. There is great interest in identifying novel chemotherapeutic options for treating liposarcoma based upon molecular alterations in the cancer cells. The Aurora kinases have been identified as promising chemotherapeutic targets based on their altered expression in many human cancers and cellular roles in mitosis and cytokinesis.
View Article and Find Full Text PDFRegarding the improvement of current quantized Hall resistance (QHR) standards, one promising avenue is the growth of homogeneous monolayer epitaxial graphene (EG). A clean and simple process is used to produce large, precise areas of EG. Properties like the surface conductivity and dielectric loss tangent remain unstable when EG is exposed to air due to doping from molecular adsorption.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2017
A known deterrent to the large-scale development and use of cellulose nanocrystals (CNCs) in composite materials is their affinity for moisture, which has a profound effect on dispersion, wetting, interfacial adhesion, matrix crystallization, water uptake, and hydrothermal stability. To quantify and control the hydration and confinement of absorbed water in CNCs, we studied sulfated-CNCs neutralized with sodium cations and CNCs functionalized with less hydrophilic methyl(triphenyl)phosphonium cations. Films were cast from water suspensions at 20 °C under controlled humidity and drying rate, yielding CNC materials with distinguishably different dielectric properties and cholesteric structures.
View Article and Find Full Text PDFIEEE Trans Microw Theory Tech
November 2016
We present a free-space measurement technique for non-destructive non-contact electrical and dielectric characterization of nano-carbon composites in the Q-band frequency range of 30 GHz to 50 GHz. The experimental system and error correction model accurately reconstruct the conductivity of composite materials that are either thicker than the wave penetration depth, and therefore exhibit negligible microwave transmission (less than -40 dB), or thinner than the wave penetration depth and, therefore, exhibit significant microwave transmission. This error correction model implements a fixed wave propagation distance between antennas and corrects the complex scattering parameters of the specimen from two references, an air slab having geometrical propagation length equal to that of the specimen under test, and a metallic conductor, such as an aluminum plate.
View Article and Find Full Text PDFA method is established to reliably determine surface conductance of single-layer or multi-layer atomically thin nano-carbon graphene structures. The measurements are made in an air filled standard R100 rectangular waveguide configuration at one of the resonant frequency modes, typically at TE mode of 7.4543 GHz.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2016
Carbon nanotube composites are lightweight, multifunctional materials with readily adjustable mechanical and electrical properties-relevant to the aerospace, automotive, and sporting goods industries as high-performance structural materials. Here, we combine well-established and newly developed characterization techniques to demonstrate that ultraviolet (UV) light exposure provides a controllable means to enhance the electrical conductivity of the surface of a commercial carbon nanotube-epoxy composite by over 5 orders of magnitude. Our observations, combined with theory and simulations, reveal that the increase in conductivity is due to the formation of a concentrated layer of nanotubes on the composite surface.
View Article and Find Full Text PDFCarbon nanotube (CNT) sheets represent a novel implementation of CNTs that enable the tailoring of electrical and mechanical properties for applications in the automotive and aerospace industries. Small molecule functionalization and postprocessing techniques, such as irradiation with high-energy particles, are methods that can enhance the mechanical properties of CNTs. However, the effect that these modifications have on the electrical conduction mechanisms has not been extensively explored.
View Article and Find Full Text PDFAdvances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing.
View Article and Find Full Text PDFThe present study reports the results of a cross-cultural analysis of the role of phonetic and semantic cues in verbal learning and memory. A newly developed memory test procedure, the Bergen-Tucson Verbal Learning Test (BTVLT), expands earlier test procedures as phonetic cues are applied in addition to semantic cues in a cued recall procedure. Samples of reading disabled and typically developed adolescents from the US and from Norway were recruited as voluntary participants.
View Article and Find Full Text PDF