Publications by authors named "Obraztsova A"

Memory B cells (MBCs) formed over the individual's lifetime constitute nearly half of the circulating B cell repertoire in humans. These pre-existing MBCs dominate recall responses to their cognate antigens, but how they respond to recognition of novel antigens is not well understood. Here, we tracked the origin and followed the differentiation paths of MBCs in the early anti-spike (S) response to mRNA vaccination in SARS-CoV-2-naive individuals on single-cell and monoclonal antibody levels.

View Article and Find Full Text PDF
Article Synopsis
  • IGHV3-33 antibodies are commonly found in the immune response to the Plasmodium falciparum circumsporozoite protein, with cross-reactivity between various motifs correlating to strong parasite inhibition.
  • Identification of specific residues in these antibodies reveals how they bind cross-reactively and leads to the discovery of four different binding configurations, with one linked to high effectiveness against malaria.
  • The research connects the structural aspects of VH3-33 antibodies with their effectiveness, providing insights for creating antibody-based treatments against malaria.
View Article and Find Full Text PDF

Human monoclonal antibodies (mAbs) against the central repeat and junction domain of Plasmodium falciparum circumsporozoite protein (PfCSP) have been studied extensively to guide malaria vaccine design compared to antibodies against the PfCSP C terminus. Here, we describe the molecular characteristics and protective potential of 73 germline and mutated human mAbs against the highly immunogenic PfCSP C-terminal domain. Two mAbs recognized linear epitopes in the C-terminal linker with sequence similarity to repeat and junction motifs, whereas all others targeted conformational epitopes in the α-thrombospondin repeat (α-TSR) domain.

View Article and Find Full Text PDF

The development of an effective and durable vaccine remains a central goal in the fight against malaria. Circumsporozoite protein (CSP) is the major surface protein of sporozoites and the target of the only licensed Plasmodium falciparum (Pf) malaria vaccine, RTS,S/AS01. However, vaccine efficacy is low and short-lived, highlighting the need for a second-generation vaccine with superior efficacy and durability.

View Article and Find Full Text PDF

Antireflection and light-trapping coatings are important parts of photovoltaic architectures, which enable the reduction of parasitic optical losses, and therefore increase the power conversion efficiency (PCE). Here, we propose a novel approach to enhance the efficiency of perovskite solar cells using a light-trapping electrode (LTE) with non-reciprocal optical transmission, consisting of a perforated metal film covered with a densely packed array of nanospheres. Our LTE combines charge collection and light trapping, and it can replace classical transparent conducting oxides (TCOs) such as ITO or FTO, providing better optical transmission and conductivity.

View Article and Find Full Text PDF

T follicular helper (T) cells play a crucial role in the development of long-lived, high-quality B cell responses after infection and vaccination. However, little is known about how antigen-specific T cells clonally evolve in response to complex pathogens and what guides the targeting of different epitopes. Here, we assessed the cell phenotype, clonal dynamics, and T cell receptor (TCR) specificity of human circulating T (cT) cells during successive malaria immunizations with radiation-attenuated () sporozoites.

View Article and Find Full Text PDF

A balanced immune response is a cornerstone of healthy aging. Here, we uncover distinctive features of the long-lived blind mole-rat (Spalax spp.) adaptive immune system, relative to humans and mice.

View Article and Find Full Text PDF

Surface enhanced Raman scattering (SERS) spectra of bacteria were obtained using citrate (capped) and borohydride (uncapped) generated silver nanoparticles (Ag NPs).The observed differences in SERS spectra are attributed to the manner in which these Ag NPs interact with bacteria. Capped Ag NPs are able to partition through the surface polysaccharides of the bacterial cell to bind to the inner and outer cell membranes, as well as the periplasmic space between them.

View Article and Find Full Text PDF

The benthic microbial fuel cell (BMFC) is a promising technology for harvesting renewable energy from marine littoral environments. The scientific community has researched BMFC technology for well over a decade, but the performance remains challenging. To address this challenge, BMFC power experiments were performed on sediment collected from San Diego Bay (CA, USA), La Spezia (Italy) and Honolulu (HI, USA) in the ever-changing littoral environment.

View Article and Find Full Text PDF

Memory B cells (MBCs) epitomize the adaptation of the immune system to the environment. We identify two MBC subsets in peripheral blood, CD27 and CD27 MBCs, whose frequency changes with age. Heavy chain variable region (VH) usage, somatic mutation frequency replacement-to-silent ratio, and CDR3 property changes, reflecting consecutive selection of highly antigen-specific, low cross-reactive antibody variants, all demonstrate that CD27 and CD27 MBCs represent sequential MBC developmental stages, and stringent antigen-driven pressure selects CD27 into the CD27 MBC pool.

View Article and Find Full Text PDF

The adaptive immune system generates an incredible diversity of antigen receptors for B and T cells to keep dangerous pathogens at bay. The DNA sequences coding for these receptors arise by a complex recombination process followed by a series of productivity-based filters, as well as affinity maturation for B cells, giving considerable diversity to the circulating pool of receptor sequences. Although these datasets hold considerable promise for medical and public health applications, the complex structure of the resulting adaptive immune receptor repertoire sequencing (AIRR-seq) datasets makes analysis difficult.

View Article and Find Full Text PDF

Age-related changes can significantly alter the state of adaptive immune system and often lead to attenuated response to novel pathogens and vaccination. In present study we employed 5'RACE UMI-based full length and nearly error-free immunoglobulin profiling to compare plasma cell antibody repertoires in young (19-26 years) and middle-age (45-58 years) individuals vaccinated with a live yellow fever vaccine, modeling a newly encountered pathogen. Our analysis has revealed age-related differences in the responding antibody repertoire ranging from distinct IGH CDR3 repertoire properties to differences in somatic hypermutation intensity and efficiency and antibody lineage tree structure.

View Article and Find Full Text PDF

Physiological ageing and pathologies can have an influence on the pharmacology of numerous medicines, leading to serious iatrogenic accidents, polypharmacy and incorrect use of a medicine in elderly people. An observational study carried out in a short-stay geriatric unit focused on the issues surrounding the difficulties the elderly may encounter when taking medicines and the prevalence of the manipulation of galenic forms.

View Article and Find Full Text PDF

It was found that spectra obtained for bacteria on SERS substrates fabricated by filtering citrate-generated Ag nanoparticles (NPs) onto rigid, ceramic filters exhibited peaks due to citrate as well as the bacteria. In many cases the citrate spectrum overwhelmed that of the bacteria. Given the simplicity of the method to prepare these substrates, means of eliminating this citrate interference were explored.

View Article and Find Full Text PDF

Orthostatic hypotension is common in the elderly and is often associated with increased morbidity and mortality. Compression bandages are recommended as a first-line treatment but there is little evidence of their efficacy in literature. A case-control study involving 52 patients was carried out to test the efficacy of the bandages.

View Article and Find Full Text PDF

SERS substrates were fabricated by filtering either Ag or Au colloidal particles onto rigid, ceramic filters - onto which suspensions of bacteria were then filtered. SERS spectra of the bacteria were obtained using a Raman spectrometer that has an 'orbital raster scan' capability. It was shown that bacteria samples prepared in this manner were uniformly distributed onto the surface of the SERS substrate.

View Article and Find Full Text PDF

Sediment amendments provide promising strategies of enhancing sequestration of heavy metals and degradation of organic contaminants. The impacts of sediment amendments for metal and organic remediation including apatite, organoclay (and apatite and organoclay in geotextile mats), acetate, and chitin on environmental microbial communities in overlying water and sediment profiles are reported here. These experiments were performed concurrent with an ecotoxicity evaluation (data submitted in companion paper) and X-ray absorption spectroscopy of zinc speciation post apatite amendments.

View Article and Find Full Text PDF

Aims: This study applied culture-dependent and molecular approaches to examine the bacterial communities at corrosion sites at Granite Mountain Record Vault (GMRV) in Utah, USA, with the goal of understanding the role of microbes in these unexpected corrosion events.

Methods And Results: Samples from corroded steel chunks, rock particles and waters around the corrosion pits were collected for bacterial isolation and molecular analyses. Bacteria cultivated from these sites were identified as members of Alphaproteobacteria, Gammaproteobacteria, Firmicutes and Actinobacteria.

View Article and Find Full Text PDF

Background: Carbohydrates are a primary source of carbon and energy for many bacteria. Accurate projection of known carbohydrate catabolic pathways across diverse bacteria with complete genomes constitutes a substantial challenge due to frequent variations in components of these pathways. To address a practically and fundamentally important challenge of reconstruction of carbohydrate utilization machinery in any microorganism directly from its genomic sequence, we combined a subsystems-based comparative genomic approach with experimental validation of selected bioinformatic predictions by a combination of biochemical, genetic and physiological experiments.

View Article and Find Full Text PDF

Sediment profiles of total mercury (Hg) and monomethylmercury (MMHg) were determined from a 30-m drill hole located north of Venice, Italy. While the sediment profile of total Hg concentration was fairly constant between 1 and 10 m, that of the MMHg concentration showed an unexpected peak at a depth of 6 m. Due to the limited sulfate content (<1 mM) at the depth of 6 m, we hypothesized that the methylation of inorganic Hg(II) at this depth is associated with the syntrophic processes occurring between methanogens and sulfidogens.

View Article and Find Full Text PDF

We report a previously undescribed bacterial behavior termed electrokinesis. This behavior was initially observed as a dramatic increase in cell swimming speed during reduction of solid MnO(2) particles by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. The same behavioral response was observed when cells were exposed to small positive applied potentials at the working electrode of a microelectrochemical cell and could be tuned by adjusting the potential on the working electrode.

View Article and Find Full Text PDF

To what extent genotypic differences translate to phenotypic variation remains a poorly understood issue of paramount importance for several cornerstone concepts of microbiology including the species definition. Here, we take advantage of the completed genomic sequences, expressed proteomic profiles, and physiological studies of 10 closely related Shewanella strains and species to provide quantitative insights into this issue. Our analyses revealed that, despite extensive horizontal gene transfer within these genomes, the genotypic and phenotypic similarities among the organisms were generally predictable from their evolutionary relatedness.

View Article and Find Full Text PDF

Bacteria of the genus Shewanella can thrive in different environments and demonstrate significant variability in their metabolic and ecophysiological capabilities including cold and salt tolerance. Genomic characteristics underlying this variability across species are largely unknown. In this study, we address the problem by a comparison of the physiological, metabolic, and genomic characteristics of 19 sequenced Shewanella species.

View Article and Find Full Text PDF