Background: MR-integrated proton therapy is under development. It consists of the unique challenge of integrating a proton pencil beam scanning (PBS) beam line nozzle with an magnetic resonance imaging (MRI) scanner. The magnetic interaction between these two components is deemed high risk as the MR images can be degraded if there is cross-talk during beam delivery and image acquisition.
View Article and Find Full Text PDFPurpose: To evaluate the accuracy of different dosimeters and the treatment planning system (TPS) for assessing the skin dose due to the electron streaming effect (ESE) on a 1.5 T magnetic resonance (MR)-linac.
Method: Skin dose due to the ESE on an MR-linac (Unity, Elekta) was investigated using a solid water phantom rotated 45° in the x-y plane (IEC61217) and centered at the isocenter.
Background: The combination of magnetic resonance imaging and proton therapy offers the potential to improve cancer treatment. The magnetic field (MF)-dependent change in the dosage of ionization chambers in magnetic resonance imaging-integrated proton therapy (MRiPT) is considered by the correction factor , which needs to be determined experimentally or computed via Monte Carlo (MC) simulations.
Purpose: In this study, was both measured and simulated with high accuracy for a plane-parallel ionization chamber at different clinical relevant proton energies and MF strengths.
Purpose: The EPID PSM is a useful EPID calibration method for QA applications. The dependence of the EPID PSM on the photon beam used to acquire it has been investigated in this study for the four available PSM methods. The aim is to inform upon the viability of applying a single PSM for all available photon beams to simplify PSM implementation and maintenance.
View Article and Find Full Text PDFPurpose: Calibration of a radiotherapy electronic portal imaging device (EPID) using the pixel-sensitivity-map (PSM) in place of the flood field correction improves the utility of the EPID for quality assurance applications. Multiple methods are available for determining the PSM and this study provides an evaluation to inform on which is superior.
Methods: Three different empirical methods ("Calvary Mater Newcastle" [CMN], "Varian," and "WashU") and a Monte Carlo-based method of PSM determination were investigated on a single Varian TrueBeam STx linear accelerator (linac) with an aS1200 EPID panel.
Purpose: The aim of this study is to investigate off-axis irradiation on the Australian MRI-Linac using experiments and Monte Carlo simulations. Simulations are used to verify experimental measurements and to determine the minimum offset distance required to separate electron contamination from the photon field.
Methods: Dosimetric measurements were performed using a microDiamond detector, Gafchromic EBT3 film, and MOSkin .
Proton therapy and MRI-Linacs are two of the most exciting and fast growing technologies in radiation oncology. With over 100 MRI-Linacs and 100 proton therapy centres either in operation or under construction, an integrated approach that brings together the excellent soft tissue imaging of MRI with the superior dose conformity of proton therapy is compelling. The promise of MRI-guided proton therapy has prompted multiple research studies and the building of two pre-clinical experimental systems, taking us closer to realisation of this technology.
View Article and Find Full Text PDFBackground And Purpose: In the current and rapidly evolving era of real-time MRI-guided radiotherapy, our radiation biology and dosimetry knowledge is being tested in a novel way. This paper presents the successful design and implementation of a portable device used to generate strong localized magnetic fields. These are ideally suited for small-scale experiments that mimic the magnetic field environment inside an MRI-linac system, or more broadly MRI-guided particle therapy as well.
View Article and Find Full Text PDFPurpose: To present a first study on the treatment planning feasibility in perpendicular field MRI-integrated proton therapy that considers the full transport of protons from the pencil beam scanning (PBS) assembly to the patient inside the MRI scanner.
Methods: A generic proton PBS gantry was modeled as being integrated with a realistic split-bore MRI system in the perpendicular orientation. MRI field strengths were modeled as 0.
. To compare the accuracies of the AAA and AcurosXB dose calculation algorithms and to predict the change in the down-stream and lateral dose deposition of high energy photons in the presence of material with densities higher that commonly found in the body..
View Article and Find Full Text PDFPurpose: In the current era of MRI-linac radiotherapy, dose optimization with arbitrary dose distributions is a reality. For the first time, we present new and targeted experiments and modeling to aid in evaluating the potential dose improvements offered with an electron beam mode during MRI-linac radiotherapy.
Methods: Small collimated (1 cm diameter and 1.
The Gridded Retarding Ion Drift Sensor (GRIDS) is a small sensor that will fly on the 6 U petitSat CubeSat. It is designed to measure the three-dimensional plasma drift velocity vector in the Earth's ionosphere. The GRIDS also supplies information about the ion temperature, ion density, and the ratio of light to heavy ions present in the ionospheric plasma.
View Article and Find Full Text PDFBackground: The targeting accuracy of proton therapy (PT) for moving soft-tissue tumours is expected to greatly improve by real-time magnetic resonance imaging (MRI) guidance. The integration of MRI and PT at the treatment isocenter would offer the opportunity of combining the unparalleled soft-tissue contrast and real-time imaging capabilities of MRI with the most conformal dose distribution and best dose steering capability provided by modern PT. However, hybrid systems for MR-integrated PT (MRiPT) have not been realized so far due to a number of hitherto open technological challenges.
View Article and Find Full Text PDFPurpose: The PTW microDiamond has an enhanced spatial resolution when operated in an edge-on orientation but is not typically utilized in this orientation due to the specifications of the IAEA TRS-483 code of practice for small field dosimetry. In this work the suitability of an edge-on orientation and advantages over the recommended face-on orientation will be presented.
Methods: The PTW microDiamond in both orientations was compared on a Varian TrueBeam linac for: machine output factor (OF), percentage depth dose (PDD), and beam profile measurements from 10 × 10 cm to a 0.
Purpose: Dynamic dosimaging is a concept whereby a detector in motion is tracked with magnetic resonance imaging (MRI) to validate the amount and position of dose in a radiation therapy treatment on an MRI-linac. This work takes steps toward the realization of dynamic dosimaging with the novel high resolution silicon array detector: MagicPlate-512 (M512). The performance of the M512 was assessed in a 1.
View Article and Find Full Text PDFPurpose: The fringe field of the Australian MRI-linac causes contaminant electrons to be focused along the central axis resulting in a high surface dose. This work aims to characterize this effect using Gafchromic film and high-resolution detectors, MOSkin and microDiamond. The secondary aim is to investigate the influence of the inline magnetic field on the relative dose response of these detectors.
View Article and Find Full Text PDFPurpose: To report on experimental results of a high spatial resolution silicon-based detector exposed to therapeutic quality proton beams in a 0.95 T transverse magnetic field. These experimental results are important for the development of accurate and novel dosimetry methods in future potential real-time MRI-guided proton therapy systems.
View Article and Find Full Text PDFPhys Med Biol
November 2019
MRI-guided proton therapy is being pursued for its promise to provide a more conformal, accurate proton therapy. However, the presence of the magnetic field imposes a challenge for the beam delivery as protons are deflected due to the Lorenz force. In this study, the impact of realistic inline MRI fringe field on IMPT plan delivery is investigated for a water phantom, liver tumor and prostate cancer differing in target volume, shape, and field configuration using Monte Carlo simulations.
View Article and Find Full Text PDFVolumetric arc therapy (VMAT) for lung stereotactic body radiotherapy (SBRT) is challenging due to both breathing-induced motion and the dynamic components of the linear accelerator. In this study, a 4D Monte Carlo (4DMC) dose calculation method for VMAT SBRT is proposed and the feasibility of the method is evaluated. A rigidly-moving lung phantom was imaged using four dimensional computed tomography (4DCT).
View Article and Find Full Text PDFPurpose: Magnetic field effects on dose distribution and detector functionality must be well understood. The detector utilized to investigate these magnetic field effects was the DUO silicon array detector; the performance of this high spatial resolution detector was assessed under these conditions. The results were compared to Gafchromic EBT3 film to highlight any intrinsic magnetic field effects in the silicon.
View Article and Find Full Text PDFThe desire to utilise soft-tissue image guidance at the time of radiation treatment has led to the development of several hybrid magnetic resonance imaging (MRI) linear accelerators (linacs). These systems have the potential to realise the benefits of MRI on the treatment table with the ability of real-time motion management and adaption on a patient-specific basis. There are several MRI-linacs currently being implemented covering both low and high magnetic field strength and two beam-field orientations.
View Article and Find Full Text PDFPurpose: Given its sensitivity to anatomical variations, proton therapy is expected to benefit greatly from integration with magnetic resonance imaging for online anatomy monitoring during irradiation. Such an integration raises several challenges, as both systems mutually interact. The proton beam will experience quasi-continuous energy loss and energy-dependent electromagnetic deflection at the same time, giving rise to a deflected beam trajectory and an altered dose distribution with a displaced Bragg peak.
View Article and Find Full Text PDFPassive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner.
View Article and Find Full Text PDFPurpose: To quantify the impact of simulated errors for nasopharynx radiotherapy across multiple institutions and planning techniques (auto-plan generated Volumetric Modulated Arc Therapy (ap-VMAT), manually planned VMAT (mp-VMAT) and manually planned step and shoot Intensity Modulated Radiation Therapy (mp-ssIMRT)).
Methods: Ten patients were retrospectively planned with VMAT according to three institution's protocols. Within one institution two further treatment plans were generated using differing treatment planning techniques.