Antioxidants (Basel)
December 2023
Human peroxidasin (PXDN) is a ubiquitous peroxidase enzyme expressed in most tissues in the body. PXDN represents an interesting therapeutic target for inhibition, as it plays a role in numerous pathologies, including cardiovascular disease, cancer and fibrosis. Like other peroxidases, PXDN generates hypohalous acids and free radical species, thereby facilitating oxidative modifications of numerous biomolecules.
View Article and Find Full Text PDFEosinophil peroxidase (EPO) is the most abundant granule protein exocytosed by eosinophils, specialized human phagocytes. Released EPO catalyzes the formation of reactive oxidants from bromide, thiocyanate, and nitrite that kill tissue-invading parasites. However, EPO also plays a deleterious role in inflammatory diseases, making it a potential pharmacological target.
View Article and Find Full Text PDFElectronic structure calculations using the density-functional theory (DFT) have been performed to analyse the effect of water molecules and protonation on the heme group of peroxidases in different redox (ferric, ferrous, compounds I and II) and spin states. Shared geometries, spectroscopic properties at the Soret region, and the thermodynamics of peroxidases are discussed. B3LYP and M06-2X density functionals with different basis sets were employed on a common molecular model of the active site (Fe-centred porphine and proximal imidazole).
View Article and Find Full Text PDFThe heme enzyme chlorite dismutase (Cld) catalyzes the degradation of chlorite to chloride and dioxygen. Many questions about the molecular reaction mechanism of this iron protein have remained unanswered, including the electronic nature of the catalytically relevant oxoiron(IV) intermediate and its interaction with the distal, flexible, and catalytically active arginine. Here, we have investigated the dimeric Cld from sp.
View Article and Find Full Text PDFThe epidermal growth factor receptor (EGFR) is frequently mutated in human cancer, most notably non-small-cell lung cancer and glioblastoma. While many frequently occurring EGFR mutations are known to confer constitutive EGFR activation, the situation is less clear for rarely detected variants. In fact, more than 1000 distinct EGFR mutations are listed in the Catalogue of Somatic Mutations in Cancer (COSMIC), but for most of them, the functional consequence is unknown.
View Article and Find Full Text PDFThis paper by Jeffrey K. Glenn and Michael H. Gold (Department of Chemical, Biological, and Environmental Sciences, Oregon Graduate Center) reported for the first time the purification and characterization of a manganese peroxidase.
View Article and Find Full Text PDFChlorite dismutases (Clds) are heme b containing oxidoreductases able to decompose chlorite to chloride and molecular oxygen. This work analyses the impact of the distal, flexible and catalytic arginine on the binding of anionic angulate ligands like nitrite and the substrate chlorite. Dimeric Cld from Cyanothece sp.
View Article and Find Full Text PDFMyeloperoxidase (MPO) is a myeloid-lineage restricted enzyme largely expressed in the azurophilic granules of neutrophils. It catalyses the formation of reactive oxygen species, mainly hypochlorous acid, contributing to anti-pathogenic defense. Disorders in the production or regulation of MPO may lead to a variety of health conditions, mainly of inflammatory origin, including autoimmune inflammation.
View Article and Find Full Text PDFCoproporpyhrin III is the substrate of coproporphyrin ferrochelatases (CpfCs). These enzymes catalyse the insertion of ferrous iron into the porphyrin ring. This is the penultimate step within the coproporphyrin-dependent haeme biosynthesis pathway.
View Article and Find Full Text PDFThe autosomal dominant striated muscle disease myoglobinopathy is due to the single point mutation His98Tyr in human myoglobin (MB), the heme protein responsible for binding, storage, and controlled release of O in striated muscle. In order to understand the molecular basis of this disease, a comprehensive biochemical and biophysical study on wt MB and the variant H98Y has been performed. Although only small differences exist between the active site architectures of the two proteins, the mutant (a) exhibits an increased reactivity toward hydrogen peroxide, (b) exhibits a higher tendency to form high-molecular-weight aggregates, and (c) is more prone to heme bleaching, possibly as a consequence of the observed H O -induced formation of the Tyr98 radical close to the metal center.
View Article and Find Full Text PDFDye-decolorizing peroxidases (DyPs) have gained interest for their ability to oxidize anthraquinone-derived dyes and lignin model compounds. Spectroscopic techniques, such as electron paramagnetic resonance and optical absorption spectroscopy, provide main tools to study how the enzymatic function is linked to the heme-pocket architecture, provided the experimental conditions are carefully chosen. Here, these techniques are used to investigate the effect of active site perturbations on the structure of ferric P-class DyP from (KDyP) and three variants of the main distal residues (D143A, R232A and D143A/R232A).
View Article and Find Full Text PDFDrug resistance poses a major challenge for targeted cancer therapy. To be able to functionally screen large randomly mutated target gene libraries for drug resistance mutations, we developed a biochemically defined high-throughput assay termed PhosphoFlowSeq. Instead of selecting for proliferation or resistance to apoptosis, PhosphoFlowSeq directly analyzes the enzymatic activities of randomly mutated kinases, thereby reducing the dependency on the signaling network in the host cell.
View Article and Find Full Text PDFPeroxidasin, a heme peroxidase, has been shown to play a role in cancer progression. mRNA expression has been reported to be upregulated in metastatic melanoma cell lines and connected to the invasive phenotype, but little is known about how peroxidasin acts in cancer cells. We have analyzed peroxidasin protein expression and activity in eight metastatic melanoma cell lines using an ELISA developed with an in-house peroxidasin binding protein.
View Article and Find Full Text PDFMonoderm bacteria utilize coproheme decarboxylases (ChdCs) to generate heme b by a stepwise decarboxylation of two propionate groups of iron coproporphyrin III (coproheme), forming two vinyl groups. This work focuses on actinobacterial ChdC from Corynebacterium diphtheriae (CdChdC) to elucidate the hydrogen peroxide-mediated decarboxylation of coproheme via monovinyl monopropionyl deuteroheme (MMD) to heme b, with the principal aim being to understand the reorientation mechanism of MMD during turnover. Wild-type CdChdC and variants, namely H118A, H118F, and A207E, were studied by resonance Raman and ultraviolet-visible spectroscopy, mass spectrometry, and molecular dynamics simulations.
View Article and Find Full Text PDFThe catalytic activity of dye-decolorizing peroxidases (DyPs) toward bulky substrates, including anthraquinone dyes, phenolic lignin model compounds, or 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), is in strong contrast to their sterically restrictive active site. In two of the three known subfamilies (A- and C/D-type DyPs), catalytic protein radicals at surface-exposed sites, which are connected to the heme cofactor by electron transfer path(s), have been identified. So far in B-type DyPs, there has been no evidence for protein radical formation after activation by hydrogen peroxide.
View Article and Find Full Text PDFChlorite dismutases (Clds) are heme -containing oxidoreductases that can decompose chlorite to chloride and molecular oxygen. They are divided in two clades that differ in oligomerization, subunit architecture, and the hydrogen-bonding network of the distal catalytic arginine, which is proposed to switch between two conformations during turnover. To understand the impact of the conformational dynamics of this basic amino acid on heme coordination, structure, and catalysis, Cld from sp.
View Article and Find Full Text PDFMyeloperoxidase participates in innate immune defense mechanism through formation of microbicidal reactive oxidants and diffusible radical species. A unique activity is its ability to use chloride as a cosubstrate with hydrogen peroxide to generate chlorinating oxidants such as hypochlorous acid, a potent antimicrobial agent. However, chronic MPO activation can lead to indiscriminate protein modification causing tissue damage, and has been associated with chronic inflammatory diseases, atherosclerosis, and acute cardiovascular events.
View Article and Find Full Text PDFAccurate yet efficient high-throughput screenings have emerged as essential technology for enzyme engineering via directed evolution. Modern high-throughput screening platforms for oxidoreductases are commonly assisted by technologies such as surface display and rely on emulsification techniques to facilitate single-cell analysis via fluorescence-activated cell sorting. Empowered by the dramatically increased throughput, the screening of significantly larger sequence spaces in acceptable time frames is achieved but usually comes at the cost of restricted applicability.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
January 2021
There is a high functional diversity within the structural superfamily of porphyrin-binding dimeric α + β barrel proteins. In this review we aim to analyze structural constraints of chlorite dismutases, dye-decolorizing peroxidases and coproheme decarboxylases in detail. We identify regions of structural variations within the highly conserved fold, which are most likely crucial for functional specificities.
View Article and Find Full Text PDFT cells engineered to express chimeric antigen receptors (CAR-T cells) have shown impressive clinical efficacy in the treatment of B cell malignancies. However, the development of CAR-T cell therapies for solid tumors is hampered by the lack of truly tumor-specific antigens and poor control over T cell activity. Here we present an avidity-controlled CAR (AvidCAR) platform with inducible and logic control functions.
View Article and Find Full Text PDFSince the advent of protein crystallography, atomic-level macromolecular structures have provided a basis to understand biological function. Enzymologists use detailed structural insights on ligand coordination, interatomic distances, and positioning of catalytic amino acids to rationalize the underlying electronic reaction mechanisms. Often the proteins in question catalyze redox reactions using metal cofactors that are explicitly intertwined with their function.
View Article and Find Full Text PDFMolecular ON-switches in which a chemical compound induces protein-protein interactions can allow cellular function to be controlled with small molecules. ON-switches based on clinically applicable compounds and human proteins would greatly facilitate their therapeutic use. Here, we developed an ON-switch system in which the human retinol binding protein 4 (hRBP4) of the lipocalin family interacts with engineered hRBP4 binders in a small molecule-dependent manner.
View Article and Find Full Text PDFHuman peroxidasin 1 (PXDN) is a homotrimeric multidomain heme peroxidase and essential for tissue development and architecture. It has a biosynthetic function and catalyses the hypobromous acid-mediated formation of specific covalent sulfilimine (SN) bonds, which cross-link type IV collagen chains in basement membranes. Currently, it is unknown whether and which domain(s) [i.
View Article and Find Full Text PDF