Publications by authors named "Obiaara B Ukah"

Disruption of HIV-1 Integrase (IN) interactions with the host-factor Lens Epithelium-Derived Growth Factor (LEDGF)/p75 leads to decreased, random integration, increased latent infection, and described here, accumulation of HIV-1 antisense RNA (asRNA). asRNA increase was observed following interruptions of IN-LEDGF/p75 interactions either through pharmacologic perturbations of IN-LEDGF/p75 by treatment with allosteric HIV-1 integrase inhibitors (ALLINIs) or in cell lines with LEDGF genetic knockout. Additionally, by impairing Tat-dependent HIV transcription, asRNA abundance markedly increases.

View Article and Find Full Text PDF

Tenofovir disoproxil fumarate (TDF) and islatravir (ISL, 4'-ethynyl-2-fluoro-2'-deoxyadensine, or MK-8591) are highly potent nucleoside reverse transcriptase inhibitors. Resistance to TDF and ISL is conferred by K65R and M184V, respectively. Furthermore, K65R and M184V increase sensitivity to ISL and TDF, respectively.

View Article and Find Full Text PDF

The HIV-1 capsid core participates in several replication processes. The mature capsid core is a lattice composed of capsid (CA) monomers thought to assemble first into CA dimers, then into ∼250 CA hexamers and 12 CA pentamers. CA assembly requires conformational flexibility of each unit, resulting in the presence of unique, solvent-accessible surfaces.

View Article and Find Full Text PDF

We have recently developed the first microscopy-based strategy that enables simultaneous multiplex detection of viral RNA (vRNA), viral DNA (vDNA), and viral protein. Here, we used this approach to study the kinetics of latency reactivation in cells infected with the human immunodeficiency virus (HIV). We showed the transcription of nascent vRNA from individual latently integrated and reactivated vDNA sites appearing earlier than viral protein.

View Article and Find Full Text PDF

Technical limitations in simultaneous microscopic visualization of RNA, DNA, and proteins of HIV have curtailed progress in this field. To address this need we develop a microscopy approach, multiplex immunofluorescent cell-based detection of DNA, RNA and Protein (MICDDRP), which is based on branched DNA in situ hybridization technology. MICDDRP enables simultaneous single-cell visualization of HIV (a) spliced and unspliced RNA, (b) cytoplasmic and nuclear DNA, and (c) Gag.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session8gaj5vnuq0rh1jgbf819io174v4hmb0i): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once