ACS Chem Neurosci
December 2024
Mitragynine, an alkaloid present in the leaves of Mitragyna speciosa (kratom), has a complex pharmacology that includes low efficacy agonism at μ-opioid receptors (MORs). This study examined the activity of mitragynine at adrenergic α receptors (AαRs) in vitro and in vivo. Mitragynine displaced a radiolabeled AαR antagonist ([H]RX821002) from human AαRs in vitro with lower affinity (K = 1260 nM) than the agonists (-)-epinephrine (K = 263 nM) or lofexidine (K = 7.
View Article and Find Full Text PDFMitragynine, an opioidergic alkaloid present in (kratom), is metabolized by cytochrome P450 3A (CYP3A) to 7-hydroxymitragynine, a more potent opioid receptor agonist. The extent to which conversion to 7-hydroxymitragynine mediates the in vivo effects of mitragynine is unclear. The current study examined how CYP3A inhibition (ketoconazole) modifies the pharmacokinetics of mitragynine in rat liver microsomes in vitro.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) are embedded in phospholipids that strongly influence drug-stimulated signaling. Anionic lipids are particularly important for GPCR signaling complex formation, but a mechanism for this role is not understood. Using NMR spectroscopy, we explore the impact of anionic lipids on the function-related conformational equilibria of the human A adenosine receptor (AAR) in bilayers containing defined mixtures of zwitterionic and anionic phospholipids.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) are embedded in phospholipids that strongly influence drug-stimulated signaling. Anionic lipids are particularly important for GPCR signaling complex formation, but a mechanism for this role is not understood. Using NMR spectroscopy, we visualized the impact of anionic lipids on the function-related conformational equilibria of the human A adenosine receptor (A AR) in bilayers containing defined mixtures of zwitterionic and anionic phospholipids.
View Article and Find Full Text PDFMu opioid receptor (MOR) selective antagonists and partial agonists have clinical utility for the treatment of opioid use disorders (OUDs). However, the development of many has suffered due to their poor pharmacokinetic properties and/or rapid metabolism. Our recent efforts to identify MOR modulators have provided 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3-carboxamido)morphinan (NAQ), a low-efficacy partial agonist, that showed sub-nanomolar binding affinity to the MOR ( 0.
View Article and Find Full Text PDFKratom products have been historically and anecdotally used in south Asian countries for centuries to manage pain and opioid withdrawal. The use of kratom products has dramatically increased in the United States. More than 45 kratom alkaloids have been isolated, yet the overall pharmacology of the individual alkaloids is still not well characterized.
View Article and Find Full Text PDFThe μ opioid receptor (MOR) has been an intrinsic target to develop treatment of opioid use disorders (OUD). Herein, we report our efforts on developing centrally acting MOR antagonists by structural modifications of 17-cyclopropylmethyl-3,14-dihydroxy-4,5α-epoxy-6β-[(4'-pyridyl) carboxamido] morphinan (NAP), a peripherally acting MOR-selective antagonist. An isosteric replacement concept was applied and incorporated with physiochemical property predictions in the molecular design.
View Article and Find Full Text PDFA more complete depiction of protein energy landscapes includes the identification of different function-related conformational states and the determination of the pathways connecting them. We used total internal reflection fluorescence (TIRF) imaging to investigate the conformational dynamics of the human A adenosine receptor (AAR), a class A G protein-coupled receptor (GPCR), at the single-molecule level. Slow, reversible conformational exchange was observed among three different fluorescence emission states populated for agonist-bound AAR.
View Article and Find Full Text PDFBackground: There is limited data on the difference in the clinical characteristics and outcomes of patients with severe coronavirus disease 2019 (COVID-19) infection in the summer compared to the fall surge.
Aim: To compare the sociodemographic, clinical characteristics, and outcomes among mechanically ventilated patients with severe COVID-19 infection admitted to the intensive care unit (ICU) during the summer and fall surges in the year 2020.
Methods: We included patients admitted to the ICU and treated with invasive mechanical ventilation for COVID-19 associated respiratory failure between April 1 and December 31, 2020.
Kratom alkaloids have mostly been evaluated for their opioid activity but less at other targets that could contribute to their physiological effects. Here, we investigated the in vitro and in vivo activity of kratom alkaloids at serotonin receptors (5-HTRs). Paynantheine and speciogynine exhibited high affinity for 5-HTRs and 5-HTRs, unlike the principal kratom alkaloid mitragynine.
View Article and Find Full Text PDFBecause of the problems associated with opioids, drug discovery efforts have been employed to develop opioids with reduced side effects using approaches such as biased opioid agonism, multifunctional opioids, and allosteric modulation of opioid receptors. Receptor targets such as adrenergic, cannabinoid, P2X3 and P2X7, NMDA, serotonin, and sigma, as well as ion channels like the voltage-gated sodium channels Nav1.7 and Nav1.
View Article and Find Full Text PDFRelationships between -opioid receptor (MOR) efficacy and effects of mitragynine and 7-hydroxymitragynine are not fully established. We assessed in vitro binding affinity and efficacy and discriminative stimulus effects together with antinociception in rats. The binding affinities of mitragynine and 7-hydroxymitragynine at MOR (K values 77.
View Article and Find Full Text PDFPsychopharmacology (Berl)
September 2020
Rationale: Cancer patients receiving the antineoplastic drug paclitaxel report higher incidences and longer duration of treatment-resistant depression than patients receiving other classes of chemotherapeutics. Rodents treated with paclitaxel exhibit a suite of changes in affect-like behaviors. Further, paclitaxel causes chemotherapy-induced peripheral neuropathy (CIPN) in humans and rodents.
View Article and Find Full Text PDFSelected indole-based kratom alkaloids were evaluated for their opioid and adrenergic receptor binding and functional effects, in vivo antinociceptive effects, plasma protein binding, and metabolic stability. Mitragynine, the major alkaloid in (kratom), had higher affinity at opioid receptors than at adrenergic receptors while the vice versa was observed for corynantheidine. The observed polypharmacology of kratom alkaloids may support its utilization to treat opioid use disorder and withdrawal.
View Article and Find Full Text PDFHere, we described the structural modification of previously identified μ opioid receptor (MOR) antagonist NAN, a 6α--7'-indolyl substituted naltrexamine derivative, and its 6β--2'-indolyl substituted analogue INTA by adopting the concept of "bivalent bioisostere". Three newly prepared opioid ligands, (NBF), , and , were identified as potent MOR antagonists both in vitro and in vivo. Moreover, these three compounds significantly antagonized DAMGO-induced intracellular calcium flux and displayed varying degrees of inhibition on cAMP production.
View Article and Find Full Text PDFFor thousands of years opioids have been the first-line treatment option for pain management. However, the tolerance and addiction potential of opioids limit their applications in clinic. NFP, a MOR/KOR dual-selective opioid antagonist, was identified as a ligand that significantly antagonized the antinociceptive effects of morphine with lesser withdrawal effects than naloxone at similar doses.
View Article and Find Full Text PDFPsychopharmacology (Berl)
September 2019
Rationale: Mitragyna speciosa (kratom) may hold promise as both an analgesic and treatment for opioid use disorder. Mitragynine, its primary alkaloid constituent, is an opioid receptor ligand. However, the extent to which the in vivo effects of mitragynine are mediated by opioid receptors, or whether mitragynine interacts with other opioid agonists, is not fully established.
View Article and Find Full Text PDFThe opioid crisis is a significant public health issue with more than 115 people dying from opioid overdose per day in the United States. The aim of the present study was to characterize the in vitro and in vivo pharmacological effects of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(indole-7-carboxamido)morphinan (NAN), a μ opioid receptor (MOR) ligand that may be a potential candidate for opioid use disorder treatment that produces less withdrawal signs than naltrexone. The efficacy of NAN was compared to varying efficacy ligands at the MOR, and determined at the δ opioid receptor (DOR) and κ opioid receptor (KOR).
View Article and Find Full Text PDF