Citrus fruit and olive leaves are a source of bioactive compounds such as biophenols which have been shown to ameliorate obesity-related conditions through their anti-hyperlipidemic and anti-inflammatory effect, and by regulating lipoproteins and cholesterol body levels. Citrolive™ is a commercial extract which is obtained from the combination of both citrus fruit and olive leaf extracts; hence, it is hypothesised that Citrolive™ may moderate metabolic disorders that are related to obesity and their complications. Initially, an in vitro study of the inhibition of pancreatic lipase activity was made, however, no effect was found.
View Article and Find Full Text PDFBackground: Plant polyphenols have been found to be effective in preventing ultraviolet radiation (UVR)-induced skin alterations. A dietary approach based of these compounds could be a safe and effective method to provide a continuous adjunctive photoprotection measure. In a previous study, a combination of rosemary (Rosmarinus officinalis) and grapefruit (Citrus paradisi) extracts has exhibited potential photoprotective effects both in skin cell model and in a human pilot trial.
View Article and Find Full Text PDFThe present experiments were performed to study the effect of the flavonoid apigenin (20 mg/kg intraperitoneally (i.p.), 1 h before acquisition), on 24 h retention performance and forgetting of a step-through passive avoidance task, in young male Wistar rats.
View Article and Find Full Text PDFAdvanced glycation endproducts (AGEs) accumulate on protein deposits including the beta-amyloid plaques in Alzheimer's disease. AGEs interact with the "receptor for advanced glycation endproducts", and transmit their signals using intracellular reactive oxygen species as second messengers. Ultimately, AGEs induce the expression of a variety of pro-inflammatory markers including the tumor necrosis factor (TNF-alpha) and inducible nitric oxide (NO) synthase.
View Article and Find Full Text PDFIn many chronic neurodegenerative diseases including Frontotemporal Dementia and Alzheimer's disease (AD), microglial activation is suggested to be involved in pathogenesis or disease progression. Activated microglia secrete a variety of cytokines, including interleukin-1beta, interleukin-6, and tumor necrosis factor as well as reactive oxygen and nitrogen species (ROS/RNS). ROS and RNS contribute to alterations in neuronal glucose uptake, inhibition of mitochondrial enzymes, a decrease in mitochondrial membrane potential, impaired axonal transport, and synaptic signaling.
View Article and Find Full Text PDFThromboxane A2 (TxA2) is a strong platelet agonist involved in the pathogenesis of thrombotic diseases that elicits platelet aggregation and vasoconstriction through the activation of its specific membrane receptor (TP). Previous studies have demonstrated that certain flavonoids, naturally occurring phytochemicals, inhibit platelet function through several mechanisms, including antagonism of TP in these cells. However, the steric and inductive or mesomeric requirements underlying this effect are not fully understood.
View Article and Find Full Text PDFLipopolysaccharides released during bacterial infections induce the expression of pro-inflammatory cytokines and lead to complications such as neuronal damage in the CNS and septic shock in the periphery. While the initial infection is treated by antibiotics, anti-inflammatory agents would be advantageous add-on medications. In order to identify such compounds, we have compared 29 commercially available polyphenol-containing plant extracts and pure compounds for their ability to prevent LPS-induced up-regulation of NO production.
View Article and Find Full Text PDFMelanoma is one of the most frequently metastasizing malignant neoplasias. This study examines an experimental model of pulmonary metastasis and the B16F10 cell subline, highly metastatic in the lung. Antimetastatic effects of the flavonoids tangeretin, rutin, and diosmin were analyzed, and at the same time an analysis of the metastatic activity of ethanol was performed, considered to be necessary because it is used as a vehicle for administering the flavonoids.
View Article and Find Full Text PDFPolyphenolic compounds are widely distributed in the vegetable kingdom and are therefore consumed regularly in the human diet. Epidemiological studies suggest that foods rich in polyphenolic compounds contribute to reducing the risk of cancer. The purpose of our work is to: 1) study the possible cytotoxicity and antiproliferative effects of 13 polyphenolic compounds on 3 cell lines of melanocytes, 2 of melanoma (B16F10 and SK-MEL-1), and 1 of nontransformed melanocytes (Melan-a); and 2) identify the possible relationship between the chemical structure of the tested compounds and their effect on cellular viability.
View Article and Find Full Text PDFThe distribution of seven flavonoids, eriocitrin, luteolin 3'-O-beta-d-glucuronide, hesperidin, diosmin, isoscutellarein 7-O-glucoside, hispidulin 7-O-glucoside, and genkwanin, has been studied in Rosmarinus officinalis leaves, flowers, stems, and roots during plant growth. The maximum level reached by luteolin 3'-O-beta-d-glucuronide in leaves during June-August suggests the existence of a delay between the activation of the enzymes involved in the flavanone and flavone biosynthesis. The presence of hesperidin and diosmin in the vascular system is significant, and hesperidin shows even higher levels than the phenolic diterpenes and rosmarinic acid.
View Article and Find Full Text PDFThe distribution of six compounds with three different polyphenol skeletons have been studied in Rosmarinus officinalis: phenolic diterpenes (carnosic acid, carnosol, and 12-O-methylcarnosic acid), caffeoyl derivatives (rosmarinic acid), and flavones (isoscutellarein 7-O-glucoside and genkwanin), each showing a characteristic behavior and distribution during the vegetative cycle. Only in leaves were all six compounds present, and the highest accumulation rate was related with the young stages of development. Rosmarinic acid showed the highest concentrations of all the polyphenols in all organs.
View Article and Find Full Text PDF