We used the molecular modeling program Rosetta to identify clusters of amino acid substitutions in antibody fragments (scFvs and scAbs) that improve global protein stability and resistance to thermal deactivation. Using this methodology, we increased the melting temperature (T) and resistance to heat treatment of an antibody fragment that binds to the hemagglutinin protein (anti-HA33). Two designed antibody fragment variants with two amino acid replacement clusters, designed to stabilize local regions, were shown to have both higher T compared to the parental scFv and importantly, to retain full antigen binding activity after 2 hours of incubation at 70 °C.
View Article and Find Full Text PDFEngineered crystallizable fragment (Fc) regions of antibody domains, which assume a unique and unprecedented asymmetric structure within the homodimeric Fc polypeptide, enable completely selective binding to the complement component C1q and activation of complement via the classical pathway without any concomitant engagement of the Fcγ receptor (FcγR). We used the engineered Fc domains to demonstrate in vitro and in mouse models that for therapeutic antibodies, complement-dependent cell-mediated cytotoxicity (CDCC) and complement-dependent cell-mediated phagocytosis (CDCP) by immunological effector molecules mediated the clearance of target cells with kinetics and efficacy comparable to those of the FcγR-dependent effector functions that are much better studied, while they circumvented certain adverse reactions associated with FcγR engagement. Collectively, our data highlight the importance of CDCC and CDCP in monoclonal-antibody function and provide an experimental approach for delineating the effect of complement-dependent effector-cell engagement in various therapeutic settings.
View Article and Find Full Text PDFElucidating how antigen exposure and selection shape the human antibody repertoire is fundamental to our understanding of B-cell immunity. We sequenced the paired heavy- and light-chain variable regions (VH and VL, respectively) from large populations of single B cells combined with computational modeling of antibody structures to evaluate sequence and structural features of human antibody repertoires at unprecedented depth. Analysis of a dataset comprising 55,000 antibody clusters from CD19(+)CD20(+)CD27(-) IgM-naive B cells, >120,000 antibody clusters from CD19(+)CD20(+)CD27(+) antigen-experienced B cells, and >2,000 RosettaAntibody-predicted structural models across three healthy donors led to a number of key findings: (i) VH and VL gene sequences pair in a combinatorial fashion without detectable pairing restrictions at the population level; (ii) certain VH:VL gene pairs were significantly enriched or depleted in the antigen-experienced repertoire relative to the naive repertoire; (iii) antigen selection increased antibody paratope net charge and solvent-accessible surface area; and (iv) public heavy-chain third complementarity-determining region (CDR-H3) antibodies in the antigen-experienced repertoire showed signs of convergent paired light-chain genetic signatures, including shared light-chain third complementarity-determining region (CDR-L3) amino acid sequences and/or Vκ,λ-Jκ,λ genes.
View Article and Find Full Text PDFUnlabelled: Animal viruses frequently cause zoonotic disease in humans. As these viruses are highly diverse, evaluating the threat that they pose remains a major challenge, and efficient approaches are needed to rapidly predict virus-host compatibility. Here, we develop a combined computational and experimental approach to assess the compatibility of New World arenaviruses, endemic in rodents, with the host TfR1 entry receptors of different potential new host species.
View Article and Find Full Text PDFThe ongoing evolution of Ebolaviruses poses significant challenges to the development of immunodiagnostics for detecting emergent viral variants. There is a critical need for the discovery of monoclonal antibodies with distinct affinities and specificities for different Ebolaviruses. We developed an efficient technology for the rapid discovery of a plethora of antigen-specific monoclonal antibodies from immunized animals by mining the VH:VL paired antibody repertoire encoded by highly expanded B cells in the draining popliteal lymph node (PLN).
View Article and Find Full Text PDFMost vaccines confer protection via the elicitation of serum antibodies, yet more than 100 y after the discovery of antibodies, the molecular composition of the human serum antibody repertoire to an antigen remains unknown. Using high-resolution liquid chromatography tandem MS proteomic analyses of serum antibodies coupled with next-generation sequencing of the V gene repertoire in peripheral B cells, we have delineated the human serum IgG and B-cell receptor repertoires following tetanus toxoid (TT) booster vaccination. We show that the TT(+) serum IgG repertoire comprises ∼100 antibody clonotypes, with three clonotypes accounting for >40% of the response.
View Article and Find Full Text PDFPhotocontrol of functional peptides is a powerful tool for spatial and temporal control of cell signaling events. We show that the genetically encoded light-sensitive LOV2 domain of Avena Sativa phototropin 1 (AsLOV2) can be used to reversibly photomodulate the affinity of peptides for their binding partners. Sequence analysis and molecular modeling were used to embed two peptides into the Jα helix of the AsLOV2 domain while maintaining AsLOV2 structure in the dark but allowing for binding to effector proteins when the Jα helix unfolds in the light.
View Article and Find Full Text PDFThe precise spatio-temporal dynamics of protein activity are often critical in determining cell behaviour, yet for most proteins they remain poorly understood; it remains difficult to manipulate protein activity at precise times and places within living cells. Protein activity has been controlled by light, through protein derivatization with photocleavable moieties or using photoreactive small-molecule ligands. However, this requires use of toxic ultraviolet wavelengths, activation is irreversible, and/or cell loading is accomplished via disruption of the cell membrane (for example, through microinjection).
View Article and Find Full Text PDF