Due to their electroconductive properties, flexible open-cell polyurethane foam/silver nanowire (PUF/AgNW) structures can provide an alternative for the construction of cheap pressure transducers with limited lifetimes or used as filter media for air conditioning units, presenting bactericidal and antifungal properties. In this paper, highly electroconductive metal-polymer hybrid foams (MPHFs) based on AgNWs were manufactured and characterized. The electrical resistance of MPHFs with various degrees of AgNW coating was measured during repeated compression.
View Article and Find Full Text PDFRuthenium, as an industrial by-product or from natural sources, represents an important economical resource due to its specific applications. A complex problem is represented by ruthenium separation during reprocessing operations, therefore, different materials and methods have been proposed. The present study aims to develop a new material with good adsorbent properties able to be used for ruthenium recovery by adsorption from aqueous solutions.
View Article and Find Full Text PDFThe study of new useful, efficient and selective structures for the palladium ions' recovery has led to the development of a new series of macromolecules. Thus, this study presents a comparative behavior of two crown benzene ethers that modify the magnesium silicate surface used as adsorbent for palladium. These crown ethers are dibenzo18-crown-6 (DB18C6) and dibenzo 30-crown-10 (DB30C10).
View Article and Find Full Text PDFReducing the costs associated with water management, improving water quality and the environment are fundamental requirements of sustainable development. Maintaining the optimal level of phosphorus has a direct impact on water quality and the biological system. Current methods used in tertiary wastewater treatment for phosphorus removal present several disadvantages that influence the final water processing cost.
View Article and Find Full Text PDFDue to the increased demand for palladium, as well due to its reduced availability in nature, its recovery from diluted waste solutions becomes a necessity, and perhaps an emergency. As a result of economic and technological development, new materials with improved adsorbent properties that are more efficient for metallic ions' recovery were synthesized and introduced to market. The goal of this study was to obtain a new adsorbent material by functionalizing through impregnation a commercial polymeric support that was both inexpensive and environmentally friendly (Amberlite XAD7) with crown ether (di-benzo-18-crown-6-DB18C6).
View Article and Find Full Text PDFThe adsorptive potential has been evaluated for the aminopropyl functionalized mesoporous silica materials obtained by co-condensation and post grafting methods. Nitrogen sorption, small angle neutron and X-ray scattering (SANS and SAXS) demonstrated high surface area and well-ordered hexagonal pore structure suitable for applications as adsorbents of metals from waste waters. A comparison of Cr(VI) adsorption properties of the materials prepared by different functionalization methods has been performed.
View Article and Find Full Text PDFPlatinum group metals (PGMs) palladium, platinum, and ruthenium represent the key materials for automotive exhaust gas treatment. Since there are no adequate alternatives, the importance of these metals for the automotive industry is steadily rising. The high value of PGMs in spent catalysts justifies their recycling.
View Article and Find Full Text PDFThe aim of this study is to obtain and characterize of alginate-based membranes, as well as to choose the most suitable membrane type for the transdermal release of methotrexate. The paper presents the synthesis of four types of membranes based on alginate to which are added other copolymers (Carbopol, Tween, and Polyvinylpyrrolidone) as well as other components with different roles. Membranes and binary mixtures made between the components used in membrane synthesis and methotrexate are analyzed by thermogravimetric techniques, FTIR and UV spectroscopic techniques as well as SEM.
View Article and Find Full Text PDFThe chromium terephthalate MIL-101 is a mesoporous metal-organic framework (MOF) with unprecedented adsorption capacities due to the presence of giant pores. The application of an external pressure can effectively modify the open structure of MOFs and its interaction with guest molecules. In this work, we study MIL-101 under pressure by synchrotron X-ray diffraction and infrared (IR) spectroscopy with several pressure transmitting media (PTM).
View Article and Find Full Text PDF