The α-adrenergic receptor (α-AR) agonist guanfacine has been investigated as a potential treatment for substance use disorders. While decreasing stress-induced reinstatement of cocaine seeking in animal models and stress-induced craving in human studies, guanfacine has not been reported to decrease relapse rates. Although guanfacine engages α-AR autoreceptors, it also activates excitatory G-coupled heteroreceptors in the bed nucleus of the stria terminalis (BNST), a key brain region in driving stress-induced relapse.
View Article and Find Full Text PDFDeficits in social interaction (SI) are a core symptom of autism spectrum disorders (ASDs); however, treatments for social deficits are notably lacking. Elucidating brain circuits and neuromodulatory signaling systems that regulate sociability could facilitate a deeper understanding of ASD pathophysiology and reveal novel treatments for ASDs. Here we found that in vivo optogenetic activation of the basolateral amygdala-nucleus accumbens (BLA-NAc) glutamatergic circuit reduced SI and increased social avoidance in mice.
View Article and Find Full Text PDFBackground: Endocannabinoid signaling plays an important role in regulating synaptic transmission in the striatum, a brain region implicated as a central node of dysfunction in autism spectrum disorder. Deficits in signaling mediated by the endocannabinoid 2-arachidonoylglycerol (2-AG) have been reported in mouse models of autism spectrum disorder, but a causal role for striatal 2-AG deficiency in phenotypes relevant to autism spectrum disorder has not been explored.
Methods: Using conditional knockout mice, we examined the electrophysiological, biochemical, and behavioral effects of 2-AG deficiency by deleting its primary synthetic enzyme, diacylglycerol lipase α (DGLα), from dopamine D receptor-expressing or adenosine A2a receptor-expressing medium spiny neurons (MSNs) to determine the role of 2-AG signaling in striatal direct or indirect pathways, respectively.
Modulation of neurotransmission by the catecholamine dopamine (DA) is conserved across phylogeny. In the nematode Caenorhabditis elegans, excess DA signaling triggers Swimming-Induced Paralysis (Swip), a phenotype first described in animals with loss of function mutations in the presynaptic DA transporter (dat-1). Swip has proven to be a phenotype suitable for the identification of novel dat-1 mutations as well as the identification of novel genes that impact DA signaling.
View Article and Find Full Text PDFBackground: Smith-Lemli-Opitz syndrome (SLOS) is an inborn error of cholesterol biosynthesis characterized by diminished cholesterol and increased 7-dehydrocholesterol (7-DHC) levels. 7-Dehydrocholesterol is highly reactive, giving rise to biologically active oxysterols.
Methods: 7-DHC-derived oxysterols were measured in fibroblasts from SLOS patients and an in vivo SLOS rodent model using high-performance liquid chromatography tandem mass spectrometry.