Publications by authors named "Oakey R"

Renewal of the catecholamine-secreting chromaffin cell population of the adrenal medulla is necessary for physiological homeostasis throughout life. Definitive evidence for the presence or absence of an adrenomedullary stem cell has been enigmatic. In this work, we demonstrate that a subset of sustentacular cells endowed with a support role, are in fact adrenomedullary stem cells.

View Article and Find Full Text PDF

Despite the prevalence of sequencing data in biomedical research, the methylome remains underrepresented. Given the importance of DNA methylation in gene regulation and disease, it is crucial to address the need for reliable differential methylation methods. This work presents a novel, transferable approach for extracting information from DNA methylation data.

View Article and Find Full Text PDF

Nucleotide sequences along a gene provide instructions to transcriptional and cotranscriptional machinery allowing genome expansion into the transcriptome. Nucleotide sequence can often be shared between two genes and in some occurrences, a gene is located completely within a different gene; these are known as host/nested gene pairs. In these instances, if both genes are transcribed, overlap can result in a transcriptional crosstalk where genes regulate each other.

View Article and Find Full Text PDF

Background: Phaeochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumours. Pathogenic variants have been identified in more than 15 susceptibility genes; associated tumours are grouped into three Clusters, reinforced by their transcriptional profiles. Cluster 1A PPGLs have pathogenic variants affecting enzymes of the tricarboxylic acid cycle, including succinate dehydrogenase.

View Article and Find Full Text PDF

Context: Somatic EPAS1 variants account for 5% to 8% of all pheochromocytoma and paragangliomas (PPGL) but are detected in over 90% of PPGL in patients with congenital cyanotic heart disease, where hypoxemia may select for EPAS1 gain-of-function variants. Sickle cell disease (SCD) is an inherited hemoglobinopathy associated with chronic hypoxia and there are isolated reports of PPGL in patients with SCD, but a genetic link between the conditions has yet to be established.

Objective: To determine the phenotype and EPAS1 variant status of patients with PPGL and SCD.

View Article and Find Full Text PDF

The mammalian genome is depleted in CG dinucleotides, except at protected regions where they cluster as CpG islands (CGIs). CGIs are gene regulatory hubs and serve as transcription initiation sites and are as expected, associated with gene promoters. Advances in genomic annotations demonstrate that a quarter of CGIs are found within genes.

View Article and Find Full Text PDF

Tree ring features are affected by environmental factors and therefore are the basis for dendrochronological studies to reconstruct past environmental conditions. Oak wood often provides the data for these studies because of the durability of oak heartwood and hence the availability of samples spanning long time periods of the distant past. Wood formation is regulated in part by epigenetic mechanisms such as DNA methylation.

View Article and Find Full Text PDF
Article Synopsis
  • Hydroxycarbamide (HC) is a drug known for its ability to induce cell cycle blockade and is primarily used for treating myeloproliferative neoplasms (MPNs).
  • Recent studies indicate that HC also affects gene expression by influencing transcription factors and altering DNA methylation, beyond just halting cell division.
  • Research involving both murine models and MPN patients reveals that HC not only restores normal gene expression in hematopoietic stem cells but also modifies DNA methylation patterns associated with key regulators of blood cell formation.
View Article and Find Full Text PDF

Dopa decarboxylase (DDC) synthesizes serotonin in the developing mouse heart where it is encoded by , a tissue-specific paternally expressed imprinted gene. shares an imprinting control region (ICR) with the imprinted, maternally expressed (outside of the central nervous system) gene on mouse chromosome 11, but little else is known about the tissue-specific imprinted expression of . Fluorescent immunostaining localizes DDC to the developing myocardium in the pre-natal mouse heart, in a region susceptible to abnormal development and implicated in congenital heart defects in human.

View Article and Find Full Text PDF
Article Synopsis
  • A novel case report details a man with multiple paragangliomas and pathogenic variants in both NF1 and SDHD genes, diagnosed with familial NF1 disease since childhood.
  • During evaluation for neurological symptoms, head and neck tumors were discovered, leading to genetic counselling and subsequent surgery.
  • Genetic sequencing revealed specific variants in NF1 and SDHD, emphasizing the significance of genetic testing in understanding the development of paragangliomas and their connections to cancer susceptibility genes.
View Article and Find Full Text PDF

Zbtb11 is a conserved transcription factor mutated in families with hereditary intellectual disability. Its precise molecular and cellular functions are currently unknown, precluding our understanding of the aetiology of this disease. Using a combination of functional genomics, genetic and biochemical approaches, here we show that Zbtb11 plays essential roles in maintaining the homeostasis of mitochondrial function.

View Article and Find Full Text PDF
Article Synopsis
  • Alternative splicing (AS) and alternative polyadenylation (APA) create diverse transcripts in mammals, influenced by epigenetic marks like H3K36me3 and DNA methylation during development and differentiation.* -
  • The study reveals that H3K36me3 is not a key regulator of AS or APA, while identifying over 4000 host genes with intragenic CpG islands (iCGIs). These iCGIs show dynamic transcriptional activity depending on tissue and developmental stages.* -
  • It highlights that iCGI transcription affects host gene transcription and pre-mRNA processing more significantly than H3K36me3 or DNA methylation, driving diverse transcript and protein expression across different times and
View Article and Find Full Text PDF

In 1993, Denise Barlow proposed that genomic imprinting might have arisen from a host defense mechanism designed to inactivate retrotransposons. Although there were few examples at hand, she suggested that there should be maternal-specific and paternal-specific factors involved, with cognate imprinting boxes that they recognized; furthermore, the system should build on conserved biochemical factors, including DNA methylation, and maternal control should predominate for imprints. Here, we revisit this hypothesis in the light of recent advances in our understanding of host defense and DNA methylation and in particular, the link with Krüppel-associated box-zinc finger (KRAB-ZF) proteins.

View Article and Find Full Text PDF

The endocardium interacts with the myocardium to promote proliferation and morphogenesis during the later stages of heart development. However, the role of the endocardium in early cardiac ontogeny remains under-explored. Given the shared origin, subsequent juxtaposition, and essential cell-cell interactions of endocardial and myocardial cells throughout heart development, we hypothesized that paracrine signaling from the endocardium to the myocardium is crucial for initiating early differentiation of myocardial cells.

View Article and Find Full Text PDF

Genomic imprinting is essential for development and growth and plays diverse roles in physiology and behaviour. Imprinted genes have traditionally been studied in isolation or in clusters with respect to cis-acting modes of gene regulation, both from a mechanistic and evolutionary point of view. Recent studies in mammals, however, reveal that imprinted genes are often co-regulated and are part of a gene network involved in the control of cellular proliferation and differentiation.

View Article and Find Full Text PDF

Genetic heterogeneity presents a significant challenge for the identification of monogenic disease genes. Whole-exome sequencing generates a large number of candidate disease-causing variants and typical analyses rely on deleterious variants being observed in the same gene across several unrelated affected individuals. This is less likely to occur for genetically heterogeneous diseases, making more advanced analysis methods necessary.

View Article and Find Full Text PDF

Silver-Russell syndrome (SRS) is a clinically heterogeneous disorder characterised by severe in utero growth restriction and poor postnatal growth, body asymmetry, irregular craniofacial features and several additional minor malformations. The aetiology of SRS is complex and current evidence strongly implicates imprinted genes. Approximately, half of all patients exhibit DNA hypomethylation at the H19/IGF2 imprinted domain, and around 10% have maternal uniparental disomy of chromosome 7.

View Article and Find Full Text PDF

CCCTC-binding factor (CTCF) is the major protein involved in insulator activity in vertebrates, with widespread DNA binding sites in the genome. CTCF participates in many processes related to global chromatin organization and remodeling, contributing to the repression or activation of gene transcription. It is also involved in epigenetic reprogramming and is essential during gametogenesis and embryo development.

View Article and Find Full Text PDF

Diverse mechanisms contribute to the evolution of reproductive barriers, a process that is critical in speciation. Amongst these are alterations in gene products and in gene dosage that affect development and reproductive success in hybrid offspring. Because of its strict parent-of-origin dependence, genomic imprinting is thought to contribute to the aberrant phenotypes observed in interspecies hybrids in mammals and flowering plants, when the abnormalities depend on the directionality of the cross.

View Article and Find Full Text PDF

Developmental programming links growth in early life with health status in adulthood. Although environmental factors such as maternal diet can influence the growth and adult health status of offspring, the genetic influences on this process are poorly understood. Using the mouse as a model, we identify the imprinted gene Grb10 as a mediator of nutrient supply and demand in the postnatal period.

View Article and Find Full Text PDF

DNA binding factors are essential for regulating gene expression. CTCF and cohesin are DNA binding factors with central roles in chromatin organization and gene expression. We determined the sites of CTCF and cohesin binding to DNA in mouse brain, genome wide and in an allele-specific manner with high read-depth ChIP-seq.

View Article and Find Full Text PDF

Germ cells and adult stem cells maintain tissue homeostasis through a finely tuned program of responses to both physiological and stress-related signals. PLZF (Promyelocytic Leukemia Zinc Finger protein), a member of the POK family of transcription factors, acts as an epigenetic regulator of stem cell maintenance in germ cells and haematopoietic stem cells. We identified L1 retrotransposons as the primary targets of PLZF.

View Article and Find Full Text PDF

What good are transposable elements (TEs)? Although their activity can be harmful to host genomes and can cause disease, they nevertheless represent an important source of genetic variation that has helped shape genomes. In this review, we examine the impact of TEs, collectively referred to as the mobilome, on the transcriptome. We explore how TEs-particularly retrotransposons-contribute to transcript diversity and consider their potential significance as a source of small RNAs that regulate host gene transcription.

View Article and Find Full Text PDF

In this issue of Molecular Cell, Seisenberger et al. (2012) refine DNA methylation mapping to interrogate the epigenetic reprogramming of primordial germ cells, defining the timings of methylation loss, linking to pluripotency, and identifying potential routes to transgenerational epigenetic inheritance.

View Article and Find Full Text PDF