Publications by authors named "Oakeshott J"

In many insect species, the ability of males to inhibit their mates from remating is an important component of fitness. This ability is also essential for the effective management of insect pests, including tephritid fruit flies, using the Sterile Insect Technique. Here we apply transcriptomics and proteomics to male reproductive tissues before and after mating to characterize components of semen that might mediate remating inhibition in Queensland fruit fly.

View Article and Find Full Text PDF

Insects rely on odorant receptors (ORs) to detect and respond to volatile environmental cues, so the ORs are attracting increasing interest as potential targets for pest control. However, experimental analysis of their structures and functions faces significant challenges. Computational methods such as template-based modeling (TBM) and AlphaFold3 (AF3) could facilitate the structural characterisation of ORs.

View Article and Find Full Text PDF

Here we investigate the evolutionary dynamics of five enzyme superfamilies (CYPs, GSTs, UGTs, CCEs and ABCs) involved in detoxification in Helicoverpa armigera. The reference assembly for an African isolate of the major lineages, H. a.

View Article and Find Full Text PDF

Bactrocera tryoni (Froggatt) and Bactrocera neohumeralis (Hardy) are sibling fruit fly species that are sympatric over much of their ranges. Premating isolation of these close relatives is thought to be maintained in part by allochrony-mating activity in B. tryoni peaks at dusk, whereas in B.

View Article and Find Full Text PDF

Modern lipidomics has the power and sensitivity to elucidate the role of insects' lipidomes in their adaptations to the environment at a mechanistic molecular level. However, few lipidomic studies have yet been conducted on insects beyond model species such as . Here, we present the lipidome of adult males of another higher dipteran frugivore, .

View Article and Find Full Text PDF

Here, we provide mechanistic support for the involvement of the CYP9A subfamily of cytochrome P450 monooxygenases in the detoxification of host plant defense compounds and chemical insecticides in and . Our comparative genomics shows that a large cluster of genes occurs in the two species but with significant differences in its contents, including several species-specific duplicates and substantial sequence divergence, both between orthologs and between duplicates. Bioassays of CRISPR-Cas9 knockouts of the clusters show that, collectively, the CYP9As can detoxify two furanocoumarin plant defense compounds (imperatorin and xanthotoxin) and insecticides representing three different chemotypes (pyrethroids, avermectins, and oxadiazines).

View Article and Find Full Text PDF

Narrow substrate ranges can impact heavily on the range of applications and hence commercial viability of candidate bioremediation enzymes. Here we show that an ester hydrolase from Nocardioides strain SG-4 G has potential as a bioremediation agent against various pollutants that can be detoxified by hydrolytic cleavage of some carboxylester, carbamate, or amide linkages. Previously we showed that a radiation-killed, freeze-dried preparation (ZimA) of this strain can rapidly degrade the benzimidazole fungicide carbendazim due to the activity of a specific ester hydrolase, MheI.

View Article and Find Full Text PDF

Divergence between populations in mating behaviour can function as a potent premating isolating mechanism and promote speciation. However, very few cases of inherited intraspecific variation in sexual signalling have been reported in tephritid fruit flies, despite them being a highly speciose family. We tested for such variation in one tephritid, the Queensland fruit fly, Bactrocera tryoni (Qfly).

View Article and Find Full Text PDF
Article Synopsis
  • Rectal gland volatiles play a crucial role in sexual interactions among Queensland fruit flies, with new research identifying a wide range of chemical compounds.
  • Using advanced techniques like solid-phase microextraction and gas chromatography, researchers discovered 45 compounds in total from rectal glands, including some not previously reported.
  • Analysis revealed distinct differences in volatile compounds between male and female flies, suggesting potential pheromone functions predominantly in males.
View Article and Find Full Text PDF

Females of many insect species are unreceptive to remating for a period following their first mating. This inhibitory effect may be mediated by either the female or her first mate, or both, and often reflects the complex interplay of reproductive strategies between the sexes. Natural variation in remating inhibition and how this phenotype responds to captive breeding are largely unexplored in insects, including many pest species.

View Article and Find Full Text PDF

It is increasingly clear that pest species vary widely in their propensities to develop insecticide resistance. This review uses a comparative approach to analyze the key pest management practices and ecological and biochemical or genetic characteristics of the target that contribute to this variation. We focus on six heliothine species, three of which, , , and , have developed resistances to many pesticide classes.

View Article and Find Full Text PDF

Understanding the cumulative risk of chemical mixtures at environmentally realistic concentrations is a key challenge in honey bee ecotoxicology. Ecotoxicogenomics, including transcriptomics, measures responses in individual organisms at the molecular level which can provide insights into the mechanisms underlying phenotypic responses induced by one or more stressors and link impacts on individuals to populations. Here, fifth instar honey bee larvae were sampled from a previously reported field experiment exploring the phenotypic impacts of environmentally realistic chronic exposures of the pesticide imidacloprid (5 μg.

View Article and Find Full Text PDF

Many Drosophila species differ widely in their distributions and climate niches, making them excellent subjects for evolutionary genomic studies. Here, we have developed a database of high-quality assemblies for 46 Drosophila species and one closely related Zaprionus. Fifteen of the genomes were newly sequenced, and 20 were improved with additional sequencing.

View Article and Find Full Text PDF

Marine microalgae are a diverse group of microscopic eukaryotic and prokaryotic organisms capable of photosynthesis. They are important primary producers and carbon sinks but their physiology and persistence are severely affected by global climate change. Powerful experimental evolution technologies are being used to examine the potential of microalgae to respond adaptively to current and predicted future conditions, as well as to develop resources to facilitate species conservation and restoration of ecosystem functions.

View Article and Find Full Text PDF

Background: The highly polyphagous Queensland fruit fly (Bactrocera tryoni Froggatt) expanded its range substantially during the twentieth century and is now the most economically important insect pest of Australian horticulture, prompting intensive efforts to develop a Sterile Insect Technique (SIT) control program. Using a "common garden" approach, we have screened for natural genetic variation in key environmental fitness traits among populations from across the geographic range of this species and monitored changes in those traits induced during domestication.

Results: Significant variation was detected between the populations for heat, desiccation and starvation resistance and wing length (as a measure of body size).

View Article and Find Full Text PDF

Background: Bactrocera tryoni and Bactrocera neohumeralis mate asynchronously; the former mates exclusively around dusk while the latter mates during the day. The two species also differ in the colour of the post-pronotal lobe (callus), which is predominantly yellow in B. tryoni and brown in B.

View Article and Find Full Text PDF

The cuticular layer of the insect exoskeleton contains diverse compounds that serve important biological functions, including the maintenance of homeostasis by protecting against water loss, protection from injury, pathogens and insecticides, and communication. (Froggatt) is the most destructive pest of fruit production in Australia, yet there are no published accounts of this species' cuticular chemistry. We here provide a comprehensive description of cuticular chemistry.

View Article and Find Full Text PDF

The Queensland fruit fly, Bactrocera tryoni, is a major pest of Australian horticulture which has expanded its range in association with the spread of horticulture over the last ~ 150 years. Its distribution in northern Australia overlaps that of another fruit fly pest to which some authors accord full species status, Bactrocera aquilonis. We have used reduced representation genome-wide sequencing to genotype 359 individuals taken from 35 populations from across the current range of the two taxa, plus a further 73 individuals from six of those populations collected 15-22 years earlier.

View Article and Find Full Text PDF

F is a low-potential redox cofactor used by diverse bacteria and archaea. In mycobacteria, this cofactor has multiple roles, including adaptation to redox stress, cell wall biosynthesis, and activation of the clinical antitubercular prodrugs pretomanid and delamanid. A recent biochemical study proposed a revised biosynthesis pathway for F in mycobacteria; it was suggested that phosphoenolpyruvate served as a metabolic precursor for this pathway, rather than 2-phospholactate as long proposed, but these findings were subsequently challenged.

View Article and Find Full Text PDF

Coral reefs worldwide are suffering mass mortalities from marine heat waves. With the aim of enhancing coral bleaching tolerance, we evolved 10 clonal strains of a common coral microalgal endosymbiont at elevated temperatures (31°C) for 4 years in the laboratory. All 10 heat-evolved strains had expanded their thermal tolerance in vitro following laboratory evolution.

View Article and Find Full Text PDF