Wild grasses can serve as hosts for plant pathogens that attack small grain cereal crops, thereby perpetuating the disease cycle and potentially initiating epidemics. Foxtail barley () is a perennial grass species that is common across North America and can often be found growing near cultivated barley fields. Despite the close proximity of the two plant species in agro-ecosystems, few studies have been advanced to characterize the compatibility of to barley pathogens and its possible role in disease epidemiology.
View Article and Find Full Text PDFNucleotide-binding leucine-rich repeat (NLR) disease resistance genes typically confer resistance against races of a single pathogen. Here, we report that Yr87/Lr85, an NLR gene from Aegilops sharonensis and Aegilops longissima, confers resistance against both P. striiformis tritici (Pst) and Puccinia triticina (Pt) that cause stripe and leaf rust, respectively.
View Article and Find Full Text PDFBread wheat (Triticum aestivum) is a globally dominant crop and major source of calories and proteins for the human diet. Compared with its wild ancestors, modern bread wheat shows lower genetic diversity, caused by polyploidisation, domestication and breeding bottlenecks. Wild wheat relatives represent genetic reservoirs, and harbour diversity and beneficial alleles that have not been incorporated into bread wheat.
View Article and Find Full Text PDFRusts of the genus are wheat pathogens. Stem (black; Sr), leaf (brown; Lr), and stripe (yellow; Yr) rust, caused by f. sp.
View Article and Find Full Text PDFWheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a major wheat disease worldwide.
View Article and Find Full Text PDFBarley leaf rust, caused by , is an important disease of barley worldwide. The pathogen can develop new races that overcome resistance genes, emphasizing the need for monitoring its virulence. This study characterized 519 isolates collected in the United States from the 1989 to 2000 and 2010 to 2020 survey periods on 15 (Reaction to ) genes.
View Article and Find Full Text PDFTo safeguard bread wheat against pests and diseases, breeders have introduced over 200 resistance genes into its genome, thus nearly doubling the number of designated resistance genes in the wheat gene pool. Isolating these genes facilitates their fast-tracking in breeding programs and incorporation into polygene stacks for more durable resistance. We cloned the stem rust resistance gene Sr43, which was crossed into bread wheat from the wild grass Thinopyrum elongatum.
View Article and Find Full Text PDFStem rinfectionust, caused by the fungus f. sp. (), is one of the most devastating fungal diseases of durum and common wheat worldwide.
View Article and Find Full Text PDFThe wild relatives and progenitors of wheat have been widely used as sources of disease resistance (R) genes. Molecular identification and characterization of these R genes facilitates their manipulation and tracking in breeding programmes. Here, we develop a reference-quality genome assembly of the wild diploid wheat relative Aegilops sharonensis and use positional mapping, mutagenesis, RNA-Seq and transgenesis to identify the stem rust resistance gene Sr62, which has also been transferred to common wheat.
View Article and Find Full Text PDFBreeding wheat with durable resistance to the fungal pathogen Puccinia graminis f. sp. tritici (Pgt), a major threat to cereal production, is challenging due to the rapid evolution of pathogen virulence.
View Article and Find Full Text PDFWheat stem rust (causal organism: f. sp. ) is an important fungal disease that causes significant yield losses in barley.
View Article and Find Full Text PDFIn the last 20 years, stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), has re-emerged as a major threat to wheat and barley production in Africa and Europe.
View Article and Find Full Text PDFParasexuality contributes to diversity and adaptive evolution of haploid (monokaryotic) fungi. However, non-sexual genetic exchange mechanisms are not defined in dikaryotic fungi (containing two distinct haploid nuclei). Newly emerged strains of the wheat stem rust pathogen, Puccinia graminis f.
View Article and Find Full Text PDFDisease resistance (R) genes from wild relatives could be used to engineer broad-spectrum resistance in domesticated crops. We combined association genetics with R gene enrichment sequencing (AgRenSeq) to exploit pan-genome variation in wild diploid wheat and rapidly clone four stem rust resistance genes. AgRenSeq enables R gene cloning in any crop that has a diverse germplasm panel.
View Article and Find Full Text PDFStem rust, caused by f. sp. (), is a major biotic constraint to wheat production worldwide.
View Article and Find Full Text PDF