Publications by authors named "OG Shpyrko"

In Bragg coherent diffractive imaging, the precise location of the measured crystals in the interior of the sample is usually missing. Obtaining this information would help the study of the spatially dependent behavior of particles in the bulk of inhomogeneous samples, such as extra-thick battery cathodes. This work presents an approach to determine the 3D position of particles by precisely aligning them at the instrument axis of rotation.

View Article and Find Full Text PDF

The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented.

View Article and Find Full Text PDF

The X-ray Bragg coherent diffractive imaging (CDI) technique assumes that the structure factor holds constant over the measured crystal. This approximation breaks down for materials exhibiting variations in the unit-cell configuration, such as piezo- and ferroelectrics. In that case, the strain field cannot be reliably determined from the reconstruction because the lattice deformation and the structure factor contribute concomitantly.

View Article and Find Full Text PDF

The spin-phonon interaction in spin density wave (SDW) systems often determines the free energy landscape that drives the evolution of the system. When a passing energy flux, such as photoexcitation, drives a crystalline system far from equilibrium, the resulting lattice displacement generates transient vibrational states. Manipulating intermediate vibrational states in the vicinity of the critical point, where the SDW order parameter changes dramatically, would then allow dynamical control over functional properties.

View Article and Find Full Text PDF

Control of the metal-insulator phase transition is vital for emerging neuromorphic and memristive technologies. The ability to alter the electrically driven transition between volatile and non-volatile states is particularly important for quantum-materials-based emulation of neurons and synapses. The major challenge of this implementation is to understand and control the nanoscale mechanisms behind these two fundamental switching modalities.

View Article and Find Full Text PDF

Pump-probe experiments at synchrotrons and free-electron lasers to study ultrafast dynamics in materials far from equilibrium have been well established, but techniques to investigate equilibrium dynamics on the nano- and pico-second timescales remain underdeveloped and experimentally challenging. A promising approach relies on a double-probe X-ray speckle visibility spectroscopy setup at split-and-delay beamlines of X-ray free-electron lasers. However, the logistics in consistently producing two collinear, perfectly overlapping pulses necessary to conduct a faithful experiment is difficult to achieve.

View Article and Find Full Text PDF

Trees are used by animals, humans and machines to classify information and make decisions. Natural tree structures displayed by synapses of the brain involves potentiation and depression capable of branching and is essential for survival and learning. Demonstration of such features in synthetic matter is challenging due to the need to host a complex energy landscape capable of learning, memory and electrical interrogation.

View Article and Find Full Text PDF

The metal-insulator phase transition in magnetite, known as the Verwey transition, is characterized by a charge-orbital ordering and a lattice transformation from a cubic to monoclinic structure. We use x-ray photon correlation spectroscopy to investigate the dynamics of this charge-orbitally ordered insulating phase undergoing the insulator-to-metal transition. By tuning to the Fe L_{3} edge at the (001/2) superlattice peak, we probe the evolution of the Fe t_{2g} orbitally ordered domains present in the low temperature insulating phase and forbidden in the high temperature metallic phase.

View Article and Find Full Text PDF

We experimentally probed the stress relaxation of a monolayer of iron oxide nanoparticles at the water-air interface. Upon drop-casting onto a water surface, the nanoparticles self-assembled into islands of two-dimensional hexagonally close packed crystalline domains surrounded by large voids. When compressed laterally, the voids gradually disappeared as the surface pressure increased.

View Article and Find Full Text PDF

Here, we photoinduce and directly observe with x-ray scattering an ultrafast enhancement of the structural long-range order in the archetypal Mott system V_{2}O_{3}. Despite the ultrafast increase in crystal symmetry, the change of unit cell volume occurs an order of magnitude slower and coincides with the insulator-to-metal transition. The decoupling between the two structural responses in the time domain highlights the existence of a transient photoinduced precursor phase, which is distinct from the two structural phases present in equilibrium.

View Article and Find Full Text PDF

Rechargeable battery technologies have ignited major breakthroughs in contemporary society, including but not limited to revolutions in transportation, electronics, and grid energy storage. The remarkable development of rechargeable batteries is largely attributed to in-depth efforts to improve battery electrode and electrolyte materials. There are, however, still intimidating challenges of lower cost, longer cycle and calendar life, higher energy density, and better safety for large scale energy storage and vehicular applications.

View Article and Find Full Text PDF

The formation mechanism of five-fold multiply twinned nanoparticles has been a long-term topic because of their geometrical incompatibility. So, various models have been proposed to explain how the internal structure of the multiply twinned nanoparticles accommodates the constraints of the solid-angle deficiency. We investigate the internal structure, strain field and strain energy density of 600 nm sized five-fold multiply twinned gold nanoparticles quantitatively using Bragg coherent diffractive imaging, which is suitable for the study of buried defects and three-dimensional strain distribution with great precision.

View Article and Find Full Text PDF

Symmetry breaking and the emergence of order is one of the most fascinating phenomena in condensed matter physics. It leads to a plethora of intriguing ground states found in antiferromagnets, Mott insulators, superconductors, and density-wave systems. Exploiting states of matter far from equilibrium can provide even more striking routes to symmetry-lowered, ordered states.

View Article and Find Full Text PDF

Multielectron transfer processes are crucially important in energy and biological science but require favorable catalysts to achieve fast kinetics. Nanostructuring catalysts can dramatically improve their properties, which can be difficult to understand due to strain- and size-dependent thermodynamics, the influence of defects, and substrate-dependent activities. Here, we report three-dimensional (3D) imaging of single gold nanoparticles during catalysis of ascorbic acid decomposition using Bragg coherent diffractive imaging (BCDI).

View Article and Find Full Text PDF

Many organisms in nature have evolved sophisticated cellular mechanisms to produce photonic nanostructures and, in recent years, diverse crystalline symmetries have been identified and related to macroscopic optical properties. However, because we know little about the distributions of domain sizes, the orientations of photonic crystals, and the nature of defects in these structures, we are unable to make the connection between the nanostructure and its development and functionality. We report on nondestructive studies of the morphology of chitinous photonic crystals in butterfly wing scales.

View Article and Find Full Text PDF

Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity.

View Article and Find Full Text PDF

We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.

View Article and Find Full Text PDF

The next generation of X-ray sources will feature highly brilliant X-ray beams that will enable the imaging of local nanoscale structures with unprecedented resolution. A general formalism to predict the achievable spatial resolution in coherent diffractive imaging, based solely on diffracted intensities, is provided. The coherent dose necessary to reach atomic resolution depends significantly on the atomic scale structure, where disordered or amorphous materials require roughly three orders of magnitude lower dose compared with the expected scaling of uniform density materials.

View Article and Find Full Text PDF

The possibility of studying dynamics at time scales on the order of the pulse duration at synchrotron X-ray sources with present avalanche photodiode point detection technology is investigated, without adopting pump-probe techniques. It is found that sample dynamics can be characterized by counting single and double photon events and an analytical approach is developed to estimate the time required for a statistically significant measurement to be made. The amount of scattering required to make such a measurement possible presently within a few days is indicated and it is shown that at next-generation synchrotron sources this time will be reduced dramatically, i.

View Article and Find Full Text PDF

Topological defects can markedly alter nanomaterial properties. This presents opportunities for "defect engineering," where desired functionalities are generated through defect manipulation. However, imaging defects in working devices with nanoscale resolution remains elusive.

View Article and Find Full Text PDF

Topological defects are ubiquitous in physics and include crystallographic imperfections such as defects in condensed matter systems. Defects can determine many of the material's properties, thus providing novel opportunities for defect engineering. However, it is difficult to track buried defects and their interfaces in three dimensions with nanoscale resolution.

View Article and Find Full Text PDF

Lithium ion batteries are the dominant form of energy storage in mobile devices, increasingly employed in transportation, and likely candidates for renewable energy storage and integration into the electrical grid. To fulfil their powerful potential, electrodes with increased capacity, faster charge rates, and longer cycle life must be developed. Understanding the mechanics and chemistry of individual nanoparticles under in situ conditions is a crucial step to improving performance and mitigating damage.

View Article and Find Full Text PDF
X-ray photon correlation spectroscopy.

J Synchrotron Radiat

September 2014

In recent years, X-ray photon correlation spectroscopy (XPCS) has emerged as one of the key probes of slow nanoscale fluctuations, applicable to a wide range of condensed matter and materials systems. This article briefly reviews the basic principles of XPCS as well as some of its recent applications, and discusses some novel approaches to XPCS analysis. It concludes with a discussion of the future impact of diffraction-limited storage rings on new types of XPCS experiments, pushing the temporal resolution to nanosecond and possibly even picosecond time scales.

View Article and Find Full Text PDF

We study nonequilibrium structural dynamics in LiNi1/2Mn3/2O4 spinel cathode material during fast charge/discharge under operando conditions using coherent X-rays. Our in situ measurements reveal a hysteretic behavior of the structure upon cycling and we directly observe the interplay between different transformation mechanisms: solid solution and two-phase reactions at the single nanoparticle level. For high lithium concentrations solid solution is observed upon both charge and discharge.

View Article and Find Full Text PDF