Neural mass models (NMMs) are important for helping us interpret observations of brain dynamics. They provide a means to understand data in terms of mechanisms such as synaptic interactions between excitatory and inhibitory neuronal populations. To interpret data using NMMs we need to quantitatively compare the output of NMMs with data, and thereby find parameter values for which the model can produce the observed dynamics.
View Article and Find Full Text PDFBackgroundAssessing circadian rhythmicity from infrequently sampled data is challenging; however, these types of data are often encountered when measuring circadian transcripts in hospitalized patients.MethodsWe present ClinCirc. This method combines 2 existing mathematical methods (Lomb-Scargle periodogram and cosinor) sequentially and is designed to measure circadian oscillations from infrequently sampled clinical data.
View Article and Find Full Text PDFBoolean Delay Equations (BDEs) can simulate surprisingly complex behavior, despite their relative simplicity. In addition to steady-state dynamics, BDEs can also generate periodic and quasiperiodic oscillations, : frequency locking, and even chaos. Further, the enumerability of Boolean update functions and their compact parametrization means that BDEs can be leveraged to generate low-level descriptions of biological networks, from which more detailed formulations (e.
View Article and Find Full Text PDFNPJ Syst Biol Appl
February 2022
The circadian system-an organism's built-in biological clock-is responsible for orchestrating biological processes to adapt to diurnal and seasonal variations. Perturbations to the circadian system (e.g.
View Article and Find Full Text PDFWe present a new computational approach to analyse nystagmus waveforms. Our framework is designed to fully characterise the state of the nystagmus, aid clinical diagnosis and to quantify the dynamical changes in the oscillations over time. Both linear and nonlinear analyses of time series were used to determine the regularity and complexity of a specific homogenous phenotype of nystagmus.
View Article and Find Full Text PDFThe rapid eye movements (saccades) used to transfer gaze between targets are examples of an action. The behaviour of saccades matches that of the slow-fast model of actions originally proposed by Zeeman. Here, we extend Zeeman's model by incorporating an accumulator that represents the increase in certainty of the presence of a target, together with an integrator that converts a velocity command to a position command.
View Article and Find Full Text PDFThe circadian clock orchestrates biological processes so that they occur at specific times of the day, thereby facilitating adaptation to diurnal and seasonal environmental changes. In plants, mathematical modelling has been comprehensively integrated with experimental studies to gain a better mechanistic understanding of the complex genetic regulatory network comprising the clock. However, with an increasing number of circadian genes being discovered, there is a pressing need for methods facilitating the expansion of computational models to incorporate these newly-discovered components.
View Article and Find Full Text PDFNetwork models of brain dynamics provide valuable insight into the healthy functioning of the brain and how this breaks down in disease. A pertinent example is the use of network models to understand seizure generation (ictogenesis) in epilepsy. Recently, computational models have emerged to aid our understanding of seizures and to predict the outcome of surgical perturbations to brain networks.
View Article and Find Full Text PDFA major bottleneck in the modelling of biological networks is the parameter explosion problem - the exponential increase in the number of parameters that need to be optimised to data as the size of the model increases. Here, we address this problem in the context of the plant circadian clock by applying the method of distributed delays. We show that using this approach, the system architecture can be simplified efficiently - reducing the number of parameters - whilst still preserving the core mechanistic dynamics of the gene regulatory network.
View Article and Find Full Text PDFBackground: Parameter optimisation is a critical step in the construction of computational biology models. In eye movement research, computational models are increasingly important to understanding the mechanistic basis of normal and abnormal behaviour. In this study, we considered an existing neurobiological model of fast eye movements (saccades), capable of generating realistic simulations of: (i) normal horizontal saccades; and (ii) infantile nystagmus - pathological ocular oscillations that can be subdivided into different waveform classes.
View Article and Find Full Text PDFMany of the most important potential applications of Synthetic Biology will require the ability to design and implement high performance feedback control systems that can accurately regulate the dynamics of multiple molecular species within the cell. Here, we argue that the use of design strategies based on combining ultrasensitive response dynamics with negative feedback represents a natural approach to this problem that fully exploits the strongly nonlinear nature of cellular information processing. We propose that such feedback mechanisms can explain the adaptive responses observed in one of the most widely studied biomolecular feedback systems-the yeast osmoregulatory response network.
View Article and Find Full Text PDFThe potential for epigenetic changes in host cells following microbial infection has been widely suggested, but few examples have been reported. We assessed genome-wide patterns of DNA methylation in human macrophage-like U937 cells following infection with Burkholderia pseudomallei, an intracellular bacterial pathogen and the causative agent of human melioidosis. Our analyses revealed significant changes in host cell DNA methylation, at multiple CpG sites in the host cell genome, following infection.
View Article and Find Full Text PDFCellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability.
View Article and Find Full Text PDFMotivation: Model selection and parameter inference are complex problems of long-standing interest in systems biology. Selecting between competing models arises commonly as underlying biochemical mechanisms are often not fully known, hence alternative models must be considered. Parameter inference yields important information on the extent to which the data and the model constrain parameter values.
View Article and Find Full Text PDFRhythmic behavior is essential for plants; for example, daily (circadian) rhythms control photosynthesis and seasonal rhythms regulate their life cycle. The core of the circadian clock is a genetic network that coordinates the expression of specific clock genes in a circadian rhythm reflecting the 24-h day/night cycle. Circadian clocks exhibit stochastic noise due to the low copy numbers of clock genes and the consequent cell-to-cell variation: this intrinsic noise plays a major role in circadian clocks by inducing more robust oscillatory behavior.
View Article and Find Full Text PDFThe circadian clock measures time across a 24 h period, increasing fitness by phasing biological processes to the most appropriate time of day. The interlocking feedback loop mechanism of the clock is conserved across species; however, the number of loops varies. Mathematical and computational analyses have suggested that loop complexity affects the overall flexibility of the oscillator, including its responses to entrainment signals.
View Article and Find Full Text PDFBackground: Model selection and parameter inference are complex problems that have yet to be fully addressed in systems biology. In contrast with parameter optimisation, parameter inference computes both the parameter means and their standard deviations (or full posterior distributions), thus yielding important information on the extent to which the data and the model topology constrain the inferred parameter values.
Results: We report on the application of nested sampling, a statistical approach to computing the Bayesian evidence Z, to the inference of parameters, and the estimation of log Z in an established model of circadian rhythms.
Summary: Complex computational experiments in Systems Biology, such as fitting model parameters to experimental data, can be challenging to perform. Not only do they frequently require a high level of computational power, but the software needed to run the experiment needs to be usable by scientists with varying levels of computational expertise, and modellers need to be able to obtain up-to-date experimental data resources easily. We have developed a software suite, the Systems Biology Software Infrastructure (SBSI), to facilitate the parameter-fitting process.
View Article and Find Full Text PDFTime-dependent light input is an important feature of computational models of the circadian clock. However, publicly available models encoded in standard representations such as the Systems Biology Markup Language (SBML) either do not encode this input or use different mechanisms to do so, which hinders reproducibility of published results as well as model reuse. The authors describe here a numerically continuous function suitable for use in SBML for models of circadian rhythms forced by periodic light-dark cycles.
View Article and Find Full Text PDFCongenital nystagmus is an involuntary bilateral horizontal oscillation of the eyes that develops soon after birth. In this study, the time constants of each of the components of the neural signal underlying congenital nystagmus were obtained by time series analysis and interpreted by comparison with those of the normal oculomotor system. In the neighbourhood of the fixation position, the system generating the neural signal is approximately linear with 3 degrees of freedom.
View Article and Find Full Text PDFThe gene networks that comprise the circadian clock modulate biological function across a range of scales, from gene expression to performance and adaptive behaviour. The clock functions by generating endogenous rhythms that can be entrained to the external 24-h day-night cycle, enabling organisms to optimally time biochemical processes relative to dawn and dusk. In recent years, computational models based on differential equations have become useful tools for dissecting and quantifying the complex regulatory relationships underlying the clock's oscillatory dynamics.
View Article and Find Full Text PDFWe combine linear and nonlinear signal analysis techniques to investigate the transmission of pressure signals along a one-dimensional model of fluid flow in an elastic tube. We derive a simple, generally applicable measure for the robustness of a simulated vessel against in vivo pressure fluctuations, based on quantifying the degree of synchronization between proximal and distal pressure pulses. The practical use of this measure will be in its application to simulated pulses generated in response to a stochastic forcing term mimicking biological variations of root pressure in arterial blood flow.
View Article and Find Full Text PDFThe circadian clock controls 24-h rhythms in many biological processes, allowing appropriate timing of biological rhythms relative to dawn and dusk. Known clock circuits include multiple, interlocked feedback loops. Theory suggested that multiple loops contribute the flexibility for molecular rhythms to track multiple phases of the external cycle.
View Article and Find Full Text PDFBackground: Robustness is a central property of living systems, enabling function to be maintained against environmental perturbations. A key challenge is to identify the structures in biological circuits that confer system-level properties such as robustness. Circadian clocks allow organisms to adapt to the predictable changes of the 24-hour day/night cycle by generating endogenous rhythms that can be entrained to the external cycle.
View Article and Find Full Text PDFThe brainstem circuitry underlying saccades is symmetrical with respect to the midline. The oculomotor behaviour generated by the circuitry depends on a combination of signals passed along fibre tracts and less easily identifiable connections, such as those across the midline. The midline crossing connections are often affected by developmental disorders which give rise to unstable eye movements (see J.
View Article and Find Full Text PDF