The CBL family of E3 ubiquitin ligases regulates cell signaling in a number of tissues by promoting degradation of tyrosine kinase receptors such as epidermal growth factor receptor. CBLC, the third member of the CBL family, is expressed in epithelial tissues, including the mammary gland. A transgenic mouse strain expressing a tetracyclin-inducible CBLC in the mammary gland was derived.
View Article and Find Full Text PDFIn the hindbrain, generation of the facial nucleus involves complex developmental processes that will lead to the formation of a structure composed of motor neurons, astrocytes and oligodendrocytes. The implication of LIF-related cytokines in the development of this nucleus came to light with the analysis of mice mutant for the receptor of these cytokines, LIFR beta, which exhibit a massive loss of facial branchiomotor (fbm) neurons at birth and a severe decrease in GFAP expression, a marker of astrocytes. To uncover the cellular mechanisms regulated by LIFR beta during facial nucleus development, we first analyzed its expression pattern in the hindbrain.
View Article and Find Full Text PDFBreast cancer is a major health problem as well as scientifically poorly understood. Our knowledge of breast cancer is however rapidly progressing in several directions. First, genomic studies are establishing a new molecular classification of breast cancers.
View Article and Find Full Text PDFWe isolated a new gene which shares all the features of the Ly-6/neurotoxin superfamily, from gene organization to predicted 3D structure. As it is preferentially expressed in the nervous system, we called this gene lynx2, by analogy with lynx1, a nAChR modulator. In embryonic and postnatal mouse, lynx2 is expressed in postmitotic central and peripheral neurons.
View Article and Find Full Text PDFMol Cell Neurosci
November 2005
We performed differential gene expression profiling in the peripheral nervous system by comparing the transcriptome of sensory neurons with the transcriptome of lower motor neurons. Using suppression subtractive cDNA hybridization, we identified 5 anonymous transcripts with a predominant expression in sensory neurons. We determined the gene structures and predicted the functional protein domains.
View Article and Find Full Text PDF