Publications by authors named "O Zozulia"

Division is crucial for replicating biological compartments and, by extension, a fundamental aspect of life. Current studies highlight the importance of simple vesicular structures in prebiotic conditions, yet the mechanisms behind their self-division remain poorly understood. Recent research suggests that environmental factors can induce phase transitions in fatty acid-based protocells, leading to vesicle fission.

View Article and Find Full Text PDF

One of science's greatest challenges is determining how life can spontaneously emerge from a mixture of molecules. A complicating factor is that life and its molecules are inherently unstable-RNA and proteins are prone to hydrolysis and denaturation. For the de novo synthesis of life or to better understand its emergence at its origin, selection mechanisms are needed for unstable molecules.

View Article and Find Full Text PDF

Lipids spontaneously assemble into vesicle-forming membranes. Such vesicles serve as compartments for even the simplest living systems. Vesicles have been extensively studied for constructing synthetic cells or as models for protocells-the cells hypothesized to have existed before life.

View Article and Find Full Text PDF

In biology, cells regulate the function of molecules using catalytic reaction cycles that convert reagents with high chemical potential (fuel) to waste molecules. Inspired by biology, synthetic analogs of such chemical reaction cycles have been devised, and a widely used catalytic reaction cycle uses carboxylates as catalysts to accelerate the hydration of carbodiimides. The cycle is versatile and easy to use, so it is widely applied to regulate motors, pumps, self-assembly, and phase separation.

View Article and Find Full Text PDF

Here we demonstrate that short peptides, designed from first principles, self-assemble on the surface of graphite to produce a highly robust and catalytic nanoarchitecture, which promotes peroxidation reactions with activities that rival those of natural enzymes in both single and multi-substrate reactions. These designable peptides recapitulate the symmetry of the underlying graphite surface and act as molecular scaffolds to immobilize hemin molecules on the electrode in a hierarchical self-assembly manner. The highly ordered and uniform hybrid graphite-peptide-hemin nanoarchitecture shows the highest faradaic efficiency of any hybrid electrode reported.

View Article and Find Full Text PDF