Publications by authors named "O Yu Borodin"

Lithium-ion batteries (LIBs) face increasingly stringent demands as their application expands into new areas, including extreme temperatures and fast charging. To meet these demands, the electrolyte should enable fast lithium-ion transport and form stable interphases on electrodes simultaneously. In practice, however, improving one aspect often compromises another.

View Article and Find Full Text PDF

Self-discharge and chemically induced mechanical effects degrade calendar and cycle life in intercalation-based electrochromic and electrochemical energy storage devices. In rechargeable lithium-ion batteries, self-discharge in cathodes causes voltage and capacity loss over time. The prevailing self-discharge model centers on the diffusion of lithium ions from the electrolyte into the cathode.

View Article and Find Full Text PDF

Unlabelled: The aim of the study was to evaluate the clinical manifestations and survival of patients with giant cell arteritis (GCA).

Materials And Methods: . A retrospective study included 166 patients with newly diagnosed GCA.

View Article and Find Full Text PDF

Controlling solid electrolyte interphase (SEI) in batteries is crucial for their efficient cycling. Herein, we demonstrate an approach to enable robust battery performance that does not rely on high fractions of fluorinated species in electrolytes, thus substantially decreasing the environmental footprint and cost of high-energy batteries. In this approach, we use very low fractions of readily reducible fluorinated cations in electrolyte (∼0.

View Article and Find Full Text PDF

Contemporary materials discovery requires intricate sequences of synthesis, formulation, and characterization that often span multiple locations with specialized expertise or instrumentation. To accelerate these workflows, we present a cloud-based strategy that enabled delocalized and asynchronous design-make-test-analyze cycles. We showcased this approach through the exploration of molecular gain materials for organic solid-state lasers as a frontier application in molecular optoelectronics.

View Article and Find Full Text PDF