Background: Late potential (LP) elimination has been proposed as a surrogate endpoint for scar-related ventricular tachycardia (VT) ablation procedures. The characteristics, distribution, and predictors of persistent late potentials (pLPs) after ablation have not been studied.
Objective: The purpose of this study was to characterize the spatial distribution and features of pLP after catheter ablation of VT substrate with high-resolution mapping.
In this work we infer the underlying distribution on pore radius in human cortical bone samples using ultrasonic attenuation data. We first discuss how to formulate polydisperse attenuation models using a probabilistic approach and the Waterman Truell model for scattering attenuation. We then compare the Independent Scattering Approximation and the higher-order Waterman Truell models' forward predictions for total attenuation in polydisperse samples.
View Article and Find Full Text PDF