Background/aim: Breast cancers are one of the most common cancers in women and are responsible for many deaths worldwide. Mast cells are inflammatory cells. Their role in cancers is controversial, and there is limited data on systemic mast cell activation in cancer cases.
View Article and Find Full Text PDFOur objective was to determine the effect of a semi-synthetic sodium alginate hydrogel and its combination with platelet-rich plasma (PRP) on histopathological, biochemical, clinical, and anterior segment optical coherence tomography (AS-OCT) data. Alkali chemical burn of the cornea was induced. Injured rats were randomly divided into five equal groups and topically treated with phosphate-buffered saline (sham), platelet-rich plasma (PRP), 0.
View Article and Find Full Text PDFBackground: Pigs are the main host species for the pseudorabies virus. It causes fatal encephalitis in many species, including humans. This article aims to report the first clinical case of pseudorabies as well as isolation and molecular characterization of the virus from a hunting dog in Bursa province, Turkey.
View Article and Find Full Text PDFOrgan-on-a-chip (OOC) devices offer new approaches for metabolic disease modeling and drug discovery by providing biologically relevant models of tissues and organs in vitro with a high degree of control over experimental variables for high-content screening applications. Yet, to fully exploit the potential of these platforms, there is a need to interface them with integrated non-labeled sensing modules, capable of monitoring, in situ, their biochemical response to external stimuli, such as stress or drugs. In order to meet this need, we aim here to develop an integrated technology based on coupling a localized surface plasmon resonance (LSPR) sensing module to an OOC device to monitor the insulin in situ secretion in pancreatic islets, a key physiological event that is usually perturbed in metabolic diseases such as type 2 diabetes (T2D).
View Article and Find Full Text PDFHigh refractive index dielectric nanoresonators are attracting much attention due to their ability to control both electric and magnetic components of light. Due to the combination of confined modes with reduced absorption losses, they have recently been proposed as an alternative to nanoplasmonic biosensors. In this context, we study the use of semirandom silicon nanocylinder arrays, fabricated with simple and scalable colloidal lithography for the efficient and reliable detection of biomolecules in biological samples.
View Article and Find Full Text PDF