The synthesis of photocaged substrates of the biologically important enzyme HMG-CoA reductase is reported. HMG-CoA bearing a -hydroxyphenacyl (pHP) photocage moiety was synthesized in an overall yield of 14% over seven steps in addition to caged forms of mevalonate and mevaldehyde. The absorption maximum and quantum yield for the decaging of the photocaged compounds are dependent on pH with a λ of 330 nm and a ϕ of 5%, respectively, at pH 9.
View Article and Find Full Text PDFMachine learning-driven computer-aided synthesis planning (CASP) tools have become important tools for idea generation in the design of complex molecule synthesis but do not adequately address the stereochemical features of the target compounds. A novel approach to automated extraction of templates used in CASP that includes stereochemical information included in the US Patent and Trademark Office (USPTO) and an internal AstraZeneca database containing reactions from Reaxys, Pistachio, and AstraZeneca electronic lab notebooks is implemented in the freely available AiZynthFinder software. Three hundred sixty-seven templates covering reagent- and substrate-controlled as well as stereospecific reactions were extracted from the USPTO, while 20,724 templates were from the AstraZeneca database.
View Article and Find Full Text PDFThe application of machine learning models to the prediction of reaction outcomes currently needs large and/or highly featurized data sets. We show that a chemistry-aware model, NERF, which mimics the bonding changes that occur during reactions, allows for highly accurate predictions of the outcomes of Diels-Alder reactions using a relatively small training set, with no pretraining and no additional features. We establish a diverse data set of 9537 intramolecular, hetero-, aromatic, and inverse electron demand Diels-Alder reactions.
View Article and Find Full Text PDF