Publications by authors named "O Weinmann"

Article Synopsis
  • Intrathecal drug administration is a promising method for delivering biologics to the central nervous system (CNS), but there is limited knowledge on how well intrathecally applied antibodies are tolerated and their pharmacokinetics.
  • This study involved administering a human monoclonal antibody against Nogo-A to non-human primates, assessing toxicity, pharmacokinetics, and pharmacodynamics with no observed side effects, indicating good tolerability.
  • Findings showed that the antibody was rapidly cleared from the cerebrospinal fluid but accumulated in the serum, effectively targeting Nogo-A in the CNS, which could enhance therapeutic strategies for CNS diseases.
View Article and Find Full Text PDF

Nogo-A is a transmembrane protein with multiple functions in the central nervous system (CNS), including restriction of neurite growth and synaptic plasticity. Thus far, Nogo-A has been predominantly considered a cell contact-dependent ligand signaling via cell surface receptors. Here, we show that Nogo-A can be secreted by cultured cells of neuronal and glial origin in association with extracellular vesicles (EVs).

View Article and Find Full Text PDF

Antibody delivery to the CNS remains a huge hurdle for the clinical application of antibodies targeting a CNS antigen. The blood-brain barrier and blood-CSF barrier restrict access of therapeutic antibodies to their CNS targets in a major way. The very high amounts of therapeutic antibodies that are administered systemically in recent clinical trials to reach CNS targets are barely viable cost-wise for broad, routine applications.

View Article and Find Full Text PDF

The adult, mature central nervous system (CNS) has limited plasticity. Physical exercising can counteract this limitation by inducing plasticity and fostering processes such as learning, memory consolidation and formation. Little is known about the molecular factors that govern these mechanisms, and how they are connected with exercise.

View Article and Find Full Text PDF

Loss of bladder control is common after spinal cord injury (SCI) and no causal therapies are available. Here we investigated whether function-blocking antibodies against the nerve-fiber growth inhibitory protein Nogo-A applied to rats with severe SCI could prevent development of neurogenic lower urinary tract dysfunction. Bladder function of rats with SCI was repeatedly assessed by urodynamic examination in fully awake animals.

View Article and Find Full Text PDF