Thousands of regulatory noncoding RNAs (ncRNAs) have been annotated; however, their functions in gene regulation and contributions to cancer formation remain poorly understood. To gain a better understanding of the influence of ncRNAs on gene regulation during melanoma progression, we mapped the landscape of ncRNAs in melanocytes and melanoma cells. Nearly half of deregulated genes in melanoma are ncRNAs, with antisense RNAs (asRNAs) comprising a large portion of deregulated ncRNAs.
View Article and Find Full Text PDFOverexpression of phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in the serine synthesis pathway, promotes melanomagenesis, melanoma cell proliferation, and survival of metastases in serine-low environments such as the brain. Here, we found that PHGDH is universally increased in melanoma cells and required for melanomagenesis. Although PHGDH amplification explained PHGDH overexpression in a subset of melanomas, oncogenic BRAFV600E also promoted PHGDH transcription through mTORC1-mediated translation of ATF4.
View Article and Find Full Text PDFTranscription factor deregulation potently drives melanoma progression by dynamically and reversibly controlling gene expression programs. We previously identified the small MAF family transcription factor MAFG as a putative driver of melanoma progression, prompting an in-depth evaluation of its role in melanoma. MAFG expression increases with human melanoma stages and ectopic MAFG expression enhances the malignant behavior of human melanoma cells in vitro, xenograft models, and genetic mouse models of spontaneous melanoma.
View Article and Find Full Text PDFOverexpression of PHGDH, the rate-limiting enzyme in the serine synthesis pathway, promotes melanomagenesis, melanoma cell proliferation, and survival of metastases in serine-low environments such as the brain. While amplification explains PHGDH overexpression in a subset of melanomas, we find that PHGDH levels are universally increased in melanoma cells due to oncogenic BRAF promoting transcription through mTORC1-mediated translation of ATF4. Importantly, PHGDH expression was critical for melanomagenesis as depletion of in genetic mouse models blocked melanoma formation.
View Article and Find Full Text PDFSmall extracellular vesicles (sEVs) in the blood of cancer patients contain higher amounts of tumor markers than those identified as free-circulating. miRNAs have significant biomedical relevance due to their high stability and feasible detection. However, there is no reliable endogenous control available to measure sEVs-miRNA content, impairing the acquisition of standardized consistent measurements in cancer liquid biopsy.
View Article and Find Full Text PDF