Along the anterior-posterior axis the central nervous system is subdivided into segmental units (neuromeres) the composition of which is adapted to their region-specific functional requirements. In Drosophila melanogaster each neuromere is formed by a specific set of identified neural stem cells (neuroblasts, NBs). In the thoracic and anterior abdominal region of the embryonic ventral nerve cord segmental sets of NBs resemble the ground state (2nd thoracic segment, which does not require input of homeotic genes), and serial (segmental) homologs generate similar types of lineages.
View Article and Find Full Text PDFThe central nervous system of Drosophila melanogaster consists of fused segmental units (neuromeres), each generated by a characteristic number of neural stem cells (neuroblasts). In the embryo, thoracic and anterior abdominal neuromeres are almost equally sized and formed by repetitive sets of neuroblasts, whereas the terminal abdominal neuromeres are generated by significantly smaller populations of progenitor cells. Here we investigated the role of the Hox gene Abdominal-B in shaping the terminal neuromeres.
View Article and Find Full Text PDFThe analysis of mutants is an indispensable approach towards characterizing gene function. Combining several tools of Drosophila genetics, we designed a new strategy for a mutagenesis screen which is fast, easy-to-apply, and cheap. The combination of a cell-specific Gal4 line with an upstream activating sequence-green fluorescent protein (UAS-GFP) allows the in vivo detection of the cells or tissues of interest without the need for fixation and staining.
View Article and Find Full Text PDFSelection of asymmetric cell fates can involve both intrinsic and extrinsic factors. Previously we have identified the bag-of-marbles (bam) gene as an intrinsic factor for cystoblast fate in Drosophila germline cells and shown that it requires active product from the benign gonial cell neoplasm (bgcn) gene. Here we present the cloning and characterization of bgcn.
View Article and Find Full Text PDFIn Drosophila, central nervous system (CNS) formation starts with the delamination from the neuroectoderm of about 30 neuroblasts (NBs) per hemisegment. They give rise to approximately 350 neurons and 30 glial cells during embryonic development. Understanding the mechanisms leading to cell fate specification and differentiation in the CNS requires the identification of the NB lineages.
View Article and Find Full Text PDF