Publications by authors named "O Vandenabeele-Trambouze"

Some microarray-based instruments that use bioaffinity receptors such as antibodies or aptamers are under development to detect signatures of past or present life on planetary bodies. Studying the resistance of such instruments against space constraints and cosmic rays in particular is a prerequisite. We used several ground-based facilities to study the resistance of aptamers to various types of particles (protons, electrons, neutrons, and carbon ions) at different energies and fluences.

View Article and Find Full Text PDF

Antibody-based analytical instruments are under development to detect signatures of life on planetary bodies. Antibodies are molecular recognition reagents able to detect their target at sub-nanomolar concentrations, with high affinity and specificity. Studying antibody binding performances under space conditions is mandatory to convince space agencies of the adequacy of this promising tool for planetary exploration.

View Article and Find Full Text PDF

Aims: The aims of this study were (i) to develop a protocol for the entrapment of anaerobic (hyper)thermophilic marine micro-organisms; (ii) to test the use of the chosen polymers in a range of physical and chemical conditions and (iii) to validate the method with batch cultures.

Methods And Results: The best conditions for immobilization were obtained at 80°C with gellan and xanthan gums. After 5-week incubation, beads showed a good resistance to all tested conditions except those simultaneously including high temperature (100°C), low NaCl (<0∙5 mol l(-1) ) and extreme pH (4/8).

View Article and Find Full Text PDF

A novel halophilic bacterium, strain RHS90(T), was isolated from marine sediments from the Gulf of Lions, in the Mediterranean Sea. Its metabolic and physiological characteristics were examined under various cultural conditions, including exposure to stressful ones (oligotrophy, high pressure and high concentrations of metals). Based on phylogenetic analysis of the 16S rRNA gene, the strain was found to belong to the genus Halomonas in the class Gammaproteobacteria.

View Article and Find Full Text PDF