Within the self-consistent field approximation, computationally tractable expressions for the isotropic second-order hyperpolarizability have been derived and implemented for the calculation of two-photon absorption cross sections. The novel tensor average formulation presented in this work allows for the evaluation of isotropic damped cubic response functions using only ∼3.3% (one-photon off-resonance regions) and ∼10% (one-photon resonance regions) of the number of auxiliary Fock matrices required when explicitly calculating all the needed individual tensor components.
View Article and Find Full Text PDFWe review recent work on property decomposition techniques using quantum chemical methods and discuss some topical applications in terms of quantum mechanics-molecular mechanics calculations and the constructing of properties of large molecules and clusters. Starting out from the so-called LoProp decomposition scheme [Gagliardi et al., J.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2017
We present a new way to compute the two-body contribution to the dispersion energy using ab initio theory. By combining the complex polarization propagator method and the LoProp transformation, local contributions to the Casimir-Polder interaction is obtained. The full dispersion energy in dimer systems consisting of pairs of molecules including H, N, CO, CH, pyridine, and benzene is investigated, where anisotropic as well as isotropic models of dispersion are obtained using a decomposition scheme for the dipole-dipole polarizability.
View Article and Find Full Text PDFIn this work, we apply quantum mechanics/molecular mechanics (QM/MM) approach to predict core-electron binding energies and chemical shifts of polymers, obtainable via X-ray photoelectron spectroscopy(XPS), using polymethyl methacrylate as a demonstration example. The results indicate that standard parametrizations of the quantum part (basis sets, level of correlation) and the molecular mechanics parts (decomposed charges, polarizabilities, and capping technique) are sufficient for the QM/MM model to be predictive for XPS of polymers. It is found that the polymer environment produces contributions to the XPS binding energies that are close to monotonous with the number of monomer units, totally amounting to approximately an eV decrease in binding energies.
View Article and Find Full Text PDF