Front Biosci (Elite Ed)
December 2023
Background: Bacteria and fungi are the most important soil organisms owing to their abundance and the key roles they play in the functioning of ecosystems. We examined possible synergistic and antagonistic effects during the degradation of polycyclic aromatic hydrocarbons (PAHs) by co-cultures of ascomycetes and a plant-growth-promoting bacterium.
Methods: Bacteria and fungi were grown in a liquid nutrient medium supplemented with PAHs.
Natural and technical phytoremediation approaches were compared for their efficacy in decontaminating oil-polluted soil. We examined 20 oil-contaminated sites of 800 to 12,000 m each, with different contamination types (fresh or aged) and levels (4.2-27.
View Article and Find Full Text PDFVavilovskii Zhurnal Genet Selektsii
August 2022
The physiological and biochemical activity of plant-microbial associations enables them to determine the mobility, bioavailability, and accumulation of heavy metals in plant tissues. These abilities are the basis for the use of plants and their associated microorganisms in the development of approaches that ensure both the prevention of the ingress of toxic metals into food crops and the extraction of pollutants from polluted soils by using phytoremediation technologies. Whether plant-microbial complexes are used successfully depends on the knowledge of how specific organisms interact with heavy metals.
View Article and Find Full Text PDFMany petroleum extraction and refinement plants are located in arid climates. Therefore, the remediation of petroleum-polluted soils is complicated by the low moisture conditions. We ran a 70-day experiment to test the efficacy of various combining of remediation treatments with sorghum, yellow medick, and biochar to remove petroleum from and change the biological activity of Kastanozem, a soil typical of the dry steppes and semideserts of the temperate zone.
View Article and Find Full Text PDFThe effect of oil sludge and zinc, present in soil both separately and as a mixture on the physiological and biochemical parameters of Miscanthus × giganteus plant was examined in a pot experiment. The opposite effect of pollutants on the accumulation of plant biomass was established: in comparison with uncontaminated control the oil sludge increased, and Zn reduced the root and shoot biomass. Oil sludge had an inhibitory effect on the plant photosynthetic apparatus, which intensified in the presence of Zn.
View Article and Find Full Text PDF