ACS Appl Mater Interfaces
December 2024
Stimuli-induced release resulting in biochemical transformations has received a lot of attention due to its application in controlled drug release. In this work, catalase (EC 1.11.
View Article and Find Full Text PDFThis study aims to design microgels for controlled drug release via enzymatically generated pH changes in the presence of glucose. Modern medicine is focused on developing smart delivery systems with controlled release capabilities. In response to this demand, we present the synthesis, characterization, and enzymatically triggered drug release behavior of microgels based on poly(acrylic acid) modified with glucose oxidase (GOx) (p(AA-BIS)-GOx).
View Article and Find Full Text PDFThis study investigates the controlled release of α-chymotrypsin from an alginate hydrogel matrix. When protein molecules entrapped in the hydrogel matrix have a size smaller than the hydrogel pores, their hold/release from the polymer matrix are controlled by the electrostatic interaction between the guest molecules and host polymer. α-Chymotrypsin, as a model protein, was chemically modified with negatively charged species to change its pI and to convert its attractive interaction with a negatively charged alginate hydrogel matrix to a repulsion interaction allowing its release by pH-triggered signal.
View Article and Find Full Text PDFA metal-organic framework (MOF), ZIF-8, which is stable at neutral and slightly basic pH values in aqueous solutions and destabilized/dissolved under acidic conditions, is loaded with a pH-insensitive fluorescent dye, rhodamine-B isothiocyanate, as a model payload species. Then, the MOF species are immobilized at an electrode surface. The local (interfacial) pH value is rapidly decreased by means of an electrochemically stimulated ascorbate oxidation at +0.
View Article and Find Full Text PDF