Publications by authors named "O V Slatinskaya"

The demand for RNA-based therapeutics is increasing globally. However, their use is hampered by the lack of safe and effective delivery vehicles. Here, we developed technologies for highly efficient delivery of RNA cargo into programmable extracellular vesicle-mimetic nanovesicles (EMNVs) by fabricating hybrid EMNV-liposomes (Hybs).

View Article and Find Full Text PDF

Extracellular vesicles (EVs), biomimetics, and other biological nanoparticles (BNs) produced from human cells are gaining increasing attention in the fields of molecular diagnostics and nanomedicine for the delivery of therapeutic cargo. In particular, BNs are considered prospective delivery vehicles for different biologics, including protein and RNA therapeutics. Moreover, EVs are widely used in molecular diagnostics for early detection of disease-associated proteins and RNA.

View Article and Find Full Text PDF

CRISPR/Cas systems are perspective molecular tools for targeted manipulation with genetic materials, such as gene editing, regulation of gene transcription, modification of epigenome etc. While CRISPR/Cas systems proved to be highly effective for correcting genetic disorders and treating infectious diseases and cancers in experimental settings, clinical translation of these results is hampered by the lack of efficient CRISPR/Cas delivery vehicles. Modern synthetic nanovehicles based on organic and inorganic polymers have many disadvantages, including toxicity issues, the lack of targeted delivery, and complex and expensive production pipelines.

View Article and Find Full Text PDF

Biological nanoparticles (NPs), such as extracellular vesicles (EVs), exosome-mimetic nanovesicles (EMNVs) and nanoghosts (NGs), are perspective non-viral delivery vehicles for all types of therapeutic cargo. Biological NPs are renowned for their exceptional biocompatibility and safety, alongside their ease of functionalization, but a significant challenge arises when attempting to load therapeutic payloads, such as nucleic acids (NAs). One effective strategy involves fusing biological NPs with liposomes loaded with NAs, resulting in hybrid carriers that offer the benefits of both biological NPs and the capacity for high cargo loads.

View Article and Find Full Text PDF

Because of their high biocompatibility, biological barrier negotiation, and functionalization properties, biological nanoparticles have been actively investigated for many medical applications. Biological nanoparticles, including natural extracellular vesicles (EVs) and synthetic extracellular vesicle-mimetic nanovesicles (EMNVs), represent novel drug delivery vehicles that can accommodate different payloads. In this study, we investigated the physical, biological, and delivery properties of EVs and EMNVs and analyzed their ability to deliver the chemotherapeutic drug doxorubicin.

View Article and Find Full Text PDF