Publications by authors named "O V Serov"

The SARS-CoV-2 pandemic has underscored the necessity for functional transgenic animal models for testing. Mouse lines with overexpression of the human receptor ACE2 serve as the common animal model to study COVID-19 infection. Overexpression of ACE2 under a strong ubiquitous promoter facilitates convenient and sensitive testing of COVID-19 pathology.

View Article and Find Full Text PDF

The COVID-19 pandemic has uncovered the high genetic variability of the SARS-CoV-2 virus and its ability to evade the immune responses that were induced by earlier viral variants. Only a few monoclonal antibodies that have been reported to date are capable of neutralizing a broad spectrum of SARS-CoV-2 variants. Here, we report the isolation of a new broadly neutralizing human monoclonal antibody, iC1.

View Article and Find Full Text PDF

In this work, we set out to create mice susceptible to the SARS-CoV-2 coronavirus. To ensure the ubiquitous expression of the human ACE2 gene we used the human EF1a promoter. Using pronuclear microinjection of the transgene construct, we obtained six founders with the insertion of the EF1a-hACE2 transgene, from which four independent mouse lines were established.

View Article and Find Full Text PDF
Article Synopsis
  • Over the past 20 years, coronaviruses have caused three significant epidemics: SARS-CoV, MERS-CoV, and SARS-CoV2, with varying levels of lethality.
  • These viruses originate from animals like bats, civets, and camels, and infect humans through interactions with the ACE2 protein in the lungs.
  • To study these diseases effectively, scientists have created transgenic mice that carry the human ACE2 gene, allowing them to be susceptible to coronavirus infections, which aids in vaccine testing.
View Article and Find Full Text PDF

Transgenic animals are an important tool in biotechnology, including the production of recombinant proteins in the milk. Traditionally, expression constructs are based on hybrid vectors bearing mammary gland specific regulatory elements from the α-casein (Csn1s1), β-casein (Csn2), whey acidic protein (WAP), or β-lactoglobulin (BLG) genes. Overexpression from the randomly integrated vectors typically provides high levels of expression, but has drawbacks due to unpredictable genome localization.

View Article and Find Full Text PDF