Ecdysis, the process of extensive cell covering rearrangement, represents a remarkable physiological trait of dinoflagellates. It is involved in the regulation of the population and bloom dynamics of these microorganisms, since it is required for the formation of their thin-walled cysts. This study presents laboratory data on ecdysis in Prorocentrum cordatum, a harmful dinoflagellate species of high environmental significance.
View Article and Find Full Text PDFThe increasing inflow of nitrogen (N) substrates into marine nearshore ecosystems induces proliferation of harmful algal blooms (HABs) of dinoflagellates, such as potentially toxic invasive species Prorocentrum minimum. In this study, we estimated the influence of NO, NH and urea on transcription levels and urea transporter dur3 and nitrate transporter nrt2 genes expression in these dinoflagellates. We identified dur3 and nrt2 genes sequences in unannotated transcriptomes of P.
View Article and Find Full Text PDFThe spread of harmful dinoflagellate blooms has been linked to the increasing availability of nitrogen, including its dissolved organic forms. The relationships between organic and inorganic nutrient uptake by dinoflagellates are not completely understood; moreover, it is not clear whether organic substances are used exclusively as nitrogen or also as carbon sources. We used laboratory culture experiments to investigate the concurrent uptake of glycine and nitrate by Prorocentrum minimum and estimate a role of two widespread organic substrates, glycine and urea, as carbon sources.
View Article and Find Full Text PDFFour-domain voltage-gated cation channels (FVCCs) represent a large family of pseudo-tetrameric ion channels which includes voltage-gated calcium (Ca) and sodium (Na) channels, as well as their homologues. These transmembrane proteins are involved in a wide range of physiological processes, such as membrane excitability, rhythmical activity, intracellular signalling, etc. Information about actual diversity and phylogenetic relationships of FVCCs across the eukaryotic tree of life is scarce.
View Article and Find Full Text PDF