Endogenous antimicrobial peptides (AMPs) are evolutionarily ancient molecular factors of innate immunity that play a key role in host defense. The study of the diversity of animal defense peptides has important applications in the context of the growing global antimicrobial resistance. In this study using a transcriptome mining approach, we found three novel thanatin-like β-hairpin AMPs in the bean bug , named Rip-2, Rip-3, and Rip-4.
View Article and Find Full Text PDFThe antimicrobial resistance crisis along with challenges of antimicrobial discovery revealed the vital necessity to develop new antibiotics. Many of the animal proline-rich antimicrobial peptides (PrAMPs) inhibit the process of bacterial translation. Genome projects allowed to identify immune-related genes encoding animal host defense peptides.
View Article and Find Full Text PDFMarine polychaetes represent an extremely rich and underexplored source of novel families of antimicrobial peptides (AMPs). The rapid development of next generation sequencing technologies and modern bioinformatics approaches allows us to apply them for characterization of AMP-derived genes and the identification of encoded immune-related peptides with the aid of genome and transcriptome mining. Here, we describe a universal bioinformatic approach based on the conserved BRICHOS domain as a search query for the identification of novel structurally unique AMP families in annelids.
View Article and Find Full Text PDFProtegrin-1 (PG-1) is a cationic β-hairpin pore-forming antimicrobial peptide having a membranolytic mechanism of action. It possesses in vitro a potent antimicrobial activity against a panel of clinically relevant MDR ESKAPE pathogens. However, its extremely high hemolytic activity and cytotoxicity toward mammalian cells prevent the further development of the protegrin-based antibiotic for systemic administration.
View Article and Find Full Text PDFBackground: In the last decade, the importance of hetero-pathogenic enteroaggregative Shiga-toxin-producing for public health has increased. Recently, we described the genetic background of the EAHEC O181:H4 strain of ST678 carrying the gene in prophage and five plasmids, including the plasmid-carrying and genes. Here, we present the morphological and enzymatic characteristics of this strain, as well as susceptibility to antimicrobials, biofilm formation, etc.
View Article and Find Full Text PDF