The application of chitosan (Ch) as a promising biopolymer with hemostatic properties and high biocompatibility is limited due to its prolonged degradation time, which, in turn, slows the repair process. In the present research, we aimed to develop new technologies to reduce the biodegradation time of Ch-based materials for hemostatic application. This study was undertaken to assess the biocompatibility and hemostatic and tissue-regeneration performance of Ch-PEO-copolymer prepared by electrospinning technique.
View Article and Find Full Text PDFIn a present paper, we demonstrate novel approach to form ceramic coatings with incorporated ZnO nanoparticles (NPs) on low modulus TiZrNb alloy with enhanced biocompatibility and antibacterial parameters. Plasma Electrolytic Oxidation (PEO) was used to integrate ZnO nanoparticles (average size 12-27 nm), mixed with Ca(HPO) aqueous solution into low modulus TiZrNb alloy surface. The TiZrNb alloys with integrated ZnO NPs successfully showed higher surface porosity and contact angle.
View Article and Find Full Text PDFHigh strength, excellent corrosion resistance, high biocompatibility, osseointegration ability, and low bacteria adhesion are critical properties of metal implants. Additionally, the implant surface plays a critical role as the cell and bacteria host, and the development of a simultaneously antibacterial and biocompatible implant is still a crucial challenge. Copper nanoparticles (CuNPs) could be a promising alternative to silver in antibacterial surface engineering due to low cell toxicity.
View Article and Find Full Text PDFIn this work a simple and inexpensive method to assess the concentration ratio of the labile and mineral-bound microelements of the bone tissue was developed. The approach is based on the separation of the components of bone tissue by their selective solubility with the subsequent determination of microelements with atomic absorption spectrometry. The total concentrations of Mg, Zn, Fe, Sr, Al, Cu, and Mn and the concentrations of these elements in aqueous solutions with pH 6.
View Article and Find Full Text PDFBackground: Investigation of new effective drugs against the methicillin-resistant strains of Staphylococcus aureus (MRSA) is an urgent issue of modern medicine. Antiseptics as an alternative of antibiotics are strong, sustained, and active preparations against resistant strains and do not violate microbiocenosis.
Materials And Methods: The activity of in situ prepared chitosan-Ag nanoparticles (Ag NPs) solution with different component ratio was tested against MRSA isolated from patients.