Hypoxic-ischemic encephalopathy (HIE) is a severe neurological disorder caused by perinatal asphyxia with significant consequences. Early recognition and intervention are crucial, with therapeutic hypothermia (TH) being the primary treatment, but its efficacy depends on early initiation of treatment. Accurately assessing the HIE severity in neonatal care poses challenges, but omics approaches have made significant contribution to understanding its complex pathophysiology.
View Article and Find Full Text PDFHypoxic-ischemic encephalopathy (HIE) is one of the most common causes of childhood disability. Hypothermic therapy is currently the only approved neuroprotective approach. However, early diagnosis of HIE can be challenging, especially in the first hours after birth when the decision to use hypothermic therapy is critical.
View Article and Find Full Text PDFA study was performed to determine early metabolomic markers of ischemic hypoxic encephalopathy (HIE) using a Rice-Vannucci model for newborn rats. Dried blood spots from 7-day-old male and female rat pups, including 10 HIE-affected animals and 16 control animals, were analyzed by liquid chromatography coupled with mass spectrometry (HPLC-MS) in positive and negative ion recording modes. Multivariate statistical analysis revealed two distinct clusters of metabolites in both HPLC-MS modes.
View Article and Find Full Text PDF