Research into new antibiotics is becoming increasingly important as antibiotic resistance increases worldwide. The genus Streptomyces in particular is able to produce a wide range of antimicrobial products due to the large number of biosynthetic gene clusters (BGCs) in its genome. However, not all BGCs are expressed under laboratory conditions.
View Article and Find Full Text PDFMicroorganisms
December 2021
Streptomycetes are soil-dwelling multicellular microorganisms famous for their unprecedented ability to synthesize numerous bioactive natural products (NPs). In addition to their rich arsenal of secondary metabolites, are characterized by complex morphological differentiation. Mostly, industrial production of NPs is done by submerged fermentation, where streptomycetes grow as a vegetative mycelium forming pellets.
View Article and Find Full Text PDFStreptomycetes are well-known producers of numerous bioactive secondary metabolites widely used in medicine, agriculture, and veterinary. Usually, their genomes encode 20-30 clusters for the biosynthesis of natural products. Generally, the onset and production of these compounds are tightly coordinated at multiple regulatory levels, including cluster-situated transcriptional factors.
View Article and Find Full Text PDFDiguanylate cyclases (DGCs) and phosphodiesterases (PDEs) are essential enzymes deputed to maintain the intracellular homeostasis of the second messenger cyclic dimeric (3'→5') GMP (c-di-GMP). Recently, c-di-GMP has emerged as a crucial molecule for the streptomycetes life cycle, governing both morphogenesis and secondary metabolite production. Indeed, in ATCC14672 c-di-GMP was shown to be involved in the regulatory cascade of the peptidoglycan glycosytransferases inhibitor moenomycin A (MmA) biosynthesis.
View Article and Find Full Text PDFStreptomycetes are filamentous bacteria famous for their ability to produce a vast majority of clinically important secondary metabolites. Both complex morphogenesis and onset of antibiotic biosynthesis are tightly linked in streptomycetes and require series of specific signals for initiation. Cyclic dimeric 3'-5' guanosine monophosphate, c-di-GMP, one of the well-known bacterial second messengers, has been recently shown to govern morphogenesis and natural product synthesis in Streptomyces by altering the activity of the pleiotropic regulator BldD.
View Article and Find Full Text PDF