Publications by authors named "O Tretiak"

Photochemically induced dynamic nuclear polarization (photo-CIDNP) enables nuclear spin ordering by irradiating samples with light. Polarized spins are conventionally detected via high-field chemical-shift-resolved NMR (above 0.1 T).

View Article and Find Full Text PDF

We present a search for fundamental constant oscillations in the range 20 kHz-100 MHz that may arise within models for ultralight dark matter (UDM). Using two independent optical-spectroscopy apparatuses, we achieve up to ×1000 greater sensitivity in the search relative to previous work [D. Antypas et al.

View Article and Find Full Text PDF

A possible implication of an ultralight dark matter field interacting with the standard model degrees of freedom is oscillations of fundamental constants. Here, we establish direct experimental bounds on the coupling of an oscillating ultralight dark matter field to the up, down, and strange quarks and to the gluons, for oscillation frequencies between 10 and 10^{8}  Hz. We employ spectroscopic experiments that take advantage of the dependence of molecular transition frequencies on the nuclear masses.

View Article and Find Full Text PDF

We present a new cavity-based polarimetric scheme for highly sensitive and time-resolved measurements of birefringence and dichroism, linear and circular, that employs rapidly pulsed single-frequency continuous wave (CW) laser sources and extends current cavity-based spectropolarimetric techniques. We demonstrate how the use of a CW laser source allows for gains in spectral resolution, signal intensity, and data acquisition rate compared to traditional pulsed-based cavity ring-down polarimetry (CRDP). We discuss a particular CW-CRDP modality that is different from intensity-based cavity-enhanced polarimetric schemes as it relies on the determination of the polarization rotation frequency during a ring-down event generated by large intracavity polarization anisotropies.

View Article and Find Full Text PDF

Among the prominent candidates for dark matter are bosonic fields with small scalar couplings to the standard-model particles. Several techniques are employed to search for such couplings, and the current best constraints are derived from tests of gravity or atomic probes. In experiments employing atoms, observables would arise from expected dark-matter-induced oscillations in the fundamental constants of nature.

View Article and Find Full Text PDF