The current study investigated a triad, which comprises of adipose tissue derived stem cells isolated from infrapatellar fat pad and gelatin/polyvinyl alcohol (PVA)-based matrix with exclusive ascorbic acid signalling. Though, the bio-mechanical properties of the gelatin-PVA blended scaffolds in wet condition are equivalent to the ECM of soft tissues in general, in this study, the triad was tested as a model for neural tissue engineering. Apart from being cytocompatible and biocompatible, the porosity of the scaffold has been designed in such a manner that it facilitates the cell signalling and enables the exchange of nutrients and gases.
View Article and Find Full Text PDFInfrapatellar fat pad‑derived stem cells (IFPSCs) are emerging as an alternative to adipose tissue‑derived stem cells (ADSCs) from other sources. They are a reliable source of autologous stem cells obtained from medical waste that are suitable for use in cell‑based therapy, tissue engineering and regenerative medicine. Such clinical applications require a vast number of high‑quality IFPSCs.
View Article and Find Full Text PDFThe present Study investigated the intrinsic ability of adipose tissue-derived stem cells (ADSCs) and their neural transdifferentiation in a stage-specific manner. Woodbury's Chemical induction was implemented with modifications to achieve neural transdifferentiation. In Group I, ADSCs were preinduced with β-mercaptoethanol (β-ME) and later, with neural induction medium (NIM).
View Article and Find Full Text PDFBackground: Obesity is a growing problem in western societies. The aim of this retrospective cohort study was to determine the association between the overweight and obese polytrauma patients and pneumonia after injury.
Methods: A total of 628 patients with an Injury Severity Score (ISS) of 16 or greater and 16 years or older were included in this retrospective study.