Background: Thanks to an improved therapeutic regimen in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL), 5 year-overall survival now exceeds 90%. Unfortunately, the 25% of children who relapse have an initial poor prognosis, potentially driven by pre-existing or emerging molecular anomalies. The latter are initially and essentially identified by cytogenetics.
View Article and Find Full Text PDFMyeloproliferative neoplasms, mastocytosis, myeloid/lymphoid neoplasms with hypereosinophilia and tyrosine kinase gene fusions, and myelodysplastic/myeloproliferative neoplasms are clonal hematopoietic cancers that, with the exception of certain entities, have an indolent course. In addition to their increasingly important role in the diagnosis of these entities, as shown by the recent classification of hematolymphoid tumors in the 5th edition of the World Health Organization and the International Consensus Classification of myeloid neoplasms and acute leukemias, identification of the profile of acquired genetic abnormalities is essential for adapting patient management and early detection of patients at high risk of progression. Alongside molecular abnormalities, cytogenetic abnormalities play an important role in the diagnosis, prognosis and follow-up of these diseases.
View Article and Find Full Text PDFQuantifying uncertainty associated with our models is the only way we can express how much we know about any phenomenon. Incomplete consideration of model-based uncertainties can lead to overstated conclusions with real-world impacts in diverse spheres, including conservation, epidemiology, climate science, and policy. Despite these potentially damaging consequences, we still know little about how different fields quantify and report uncertainty.
View Article and Find Full Text PDF