Publications by authors named "O Sydoruk"

Plasmons in two-dimensional electron channels have potential applications in the terahertz frequency range. Equivalent circuit models provide a convenient framework for analysing the plasmons. This article introduces a circuit model for plasmons in the presence of a dc current that flows in a gated channel.

View Article and Find Full Text PDF

A simplified model for dark-field optical imaging of three-dimensional high aspect ratio micro- and nano- structures is proposed, to reduce the time taken to simulate object fields with in-plane scattering between different parts of the object. Primary scattering is found by assuming that illumination of Manhattan geometries generates a set of spherical edge waves, following the incremental theory of diffraction. Secondary scattering is found by assuming that primary scattering is re-scattered from nearby features.

View Article and Find Full Text PDF

We report on both experiments and theory of low-terahertz frequency range (up to 400 GHz) magnetoplasmons in a gated two-dimensional electron gas at low (<4K) temperatures. The evolution of magnetoplasmon resonances was observed as a function of magnetic field at frequencies up to ∼400 GHz. Full-wave 3D simulations of the system predicted the spatial distribution of plasmon modes in the 2D channel, along with their frequency response, allowing us to distinguish those resonances caused by bulk and edge magnetoplasmons in the experiments.

View Article and Find Full Text PDF

Improvements to white light optical imaging of widely spaced, high aspect ratio nanostructures are demonstrated using dark-field field microscopy. 1D models of bright- and dark-field imaging are developed from rigorous modal diffraction theory by assuming that features are periodic. A simple model is developed to explain dark field results and simulated line images obtained using the two modalities are compared for different dimensions and materials.

View Article and Find Full Text PDF

Because direct measurements of the refractive index of hemoglobin over a large wavelength range are challenging, indirect methods deserve particular attention. Among them, the Kramers-Kronig relations are a powerful tool often used to derive the real part of a refractive index from its imaginary part. However, previous attempts to apply the relations to solutions of human hemoglobin have been somewhat controversial, resulting in disagreement between several studies.

View Article and Find Full Text PDF