A new dihydrobenzofuran lignan, (2R,3S)-2-(3',4'-dimethoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydrobenzofuran-3-methyl acetate, named as mitredrusin (1), was isolated from the leaves of Mitrephora teysmannii (Annonaceae) together with 12 known compounds including a related dihydrobenzofuran lignan: (-)-3',4-di-O-methylcedrusin (2), four polyacetylenic acids: 13(E)-octadecene-9,11-diynoic acid (3), 13(E),17-octadecadiene-9,11-diynoic acid (4), octadeca-9,11,13-triynoic acid (5) and octadeca-17-en-9,11,13-triynoic acid (6), five lignans: (-)-eudesmin (7), (-)-epieudesmin (8), (-)-phillygenin (9), magnone A (10) and forsythialan B (11) and two megastigmans: (3S,5R,6S,7E,9R)-7-megastigmene-3,6,9-triol (12) and annoionol A (13). The chemical structures of these compounds were established on the basis of their 1-D and 2-D NMR spectroscopic data. All compounds were evaluated for their α-glucosidase inhibitory activity.
View Article and Find Full Text PDFSerine esterases react with [3H]diisopropylphosphofluoridate ([3H]DFP) to produce radioactive adducts that can be resolved by denaturing slab gel electrophoresis. To identify an esterase or its catalytic subunit, a potential substrate was included in the reaction mixture with the expectation that it would suppress the enzyme's reaction with [3H]DFP. The nature of the enzyme could be inferred from the character of the substrates that suppress labeling.
View Article and Find Full Text PDFStudies on the structural origin of the DNA alkylation selectivity of the antitumor antibiotic (+)-CC-1065 are detailed. The sites of alkylation of double-stranded DNA were examined for simple derivatives of 7-methyl-1,2,8,8a-tetrahydrocycloprop[1,2-c]pyrrolo[3,2-e]indol- 4(5H)-one (CPI), (+)-CC-1065, and agents incorporating the parent 1,2,7,7a-tetrahydrocycloprop[1,2-c]indol-4-one (CI) left-hand subunit. The CI subunit of the agents is a much more reactive alkylating agent than the natural CPI alkylation subunit of CC-1065.
View Article and Find Full Text PDF